ELSEVIER Contents lists available at ScienceDirect # Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev # The evolutionary history of vines in a neotropical biodiversity hotspot: Phylogenomics and biogeography of a large passion flower clade (*Passiflora* section *Decaloba*) Serena Acha a,b,c,*, Alexander Linan b, John MacDougal b,d, Christine Edwards b - a Department of Biology, University of Missouri-St. Louis, One University Blvd, Research Hall St. Louis, MO 63121, USA - ^b Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA - ^c University of Florida Herbarium, Florida Museum of Natural History, 1659 Museum Rd, Gainesville, FL 32611-7800, USA - ^d Harris-Stowe State University, 3026 Laclede Ave, St. Louis, MO 63103, USA #### ARTICLE INFO Keywords: 2b-RAD Vines Passion flowers Neotropics Andes Biogeography #### ABSTRACT Because of their extraordinary flower and leaf morphology, passion flowers (Passifloraceae) have fascinated naturalists since their discovery. Within the large, diverse (600 species) genus Passiflora is an especially enigmatic and species-rich (120 spp.) subclade, Section Decaloba, which occurs in the Neotropics and has its center of diversity in Andean montane forests. A recent phylogenetic study of Passifloraceae showed that Section Decaloba was monophyletic, but was unable to resolve relationships within the clade, thus preventing inferences of evolutionary history and biogeography. The goal of this study was to elucidate the phylogeny and biogeography of Section Decaloba. We sampled 206 accessions representing 91 of the \sim 120 known species in section Decaloba and four outgroups, with samples derived predominantly from herbarium specimens. We generated DNA sequences using a high-throughput DNA sequencing technique called 2b-RAD, reconstructed the phylogeny, and conducted ancestral area reconstructions to infer the biogeographic history of the group. We recovered predominantly well-supported trees in which species were grouped into two main clades: 1) the Central American clade, within which the majority of nodes well supported and species were monophyletic and 2) the South American clade, a large clade that showed overall lower resolution and included several polyphyletic species and species complexes that need additional research, RASP analysis showed that section Decaloba originated in Central America around 10.4 Ma, and then dispersed to South America, the Greater Antilles, and the Bahamas. The South American clade diversified in the Northern Andes and then dispersed to the rest of South America, and Lesser Antilles. Results suggest that both long-distance dispersal and colonization of newly available habitats (i. e., in the Andes) likely promoted diversification of this clade. This study also illustrates how using herbarium specimens and a RAD-seq approach can produce phylogenies for broadly distributed, highly diverse, and poorly accessible groups of plants where field collections would be unfeasible. #### 1. Introduction Historical processes related to plate tectonics, continental drift, changing climate, together with events like the uplift of the Andes and the Great American Biotic Interchange, have led the Neotropics to become one of the most diverse regions in the world. In total, 15 of the 25 biodiversity hotspots identified by Myers et al. (2000) occur in the Neotropics, making it the biogeographic region with the highest plant diversity (Gentry, 1982; Ulloa et al., 2017). Because of the high rates of plant diversity and endemism, as well as the relative remoteness and difficulty in studying many Neotropical ecosystems, the region is home to a large concentration of relatively poorly known plant species. Furthermore, even though the species-level diversity of herbaceous plants and vines is thought to be comparable to that of trees and epiphytes in many Neotropical ecosystems (e.g. Linares-Palomino and Kessler, 2009), species with a non-woody habit are often even more poorly understood (Cicuzza et al., 2013) because many large biodiversity inventory studies in the Neotropics have focused primarily on E-mail addresses: serena.acha@gmail.com, sachamacias@ufl.edu (S. Acha). ^{*} Corresponding author at: University of Florida Herbarium, Florida Museum of Natural History, Dickinson Hall, 1659 Museum Rd, PO Box 117800, Gainesville, FL 32611-7800, USA. woody tree species (e.g. Gentry, 1988; Simon et al., 2009; DRYFLOR et al., 2016). In this study, we focus on a highly diverse group of vines in the passion flower family (Passifloraceae) as a model system for improving our understanding of the evolutionary and biogeographic history of vines in the Neotropics. Passifloraceae, the passion flower family, is a highly diverse family of vines that has its center of diversity in the Neotropics (Christenhusz and Byng, 2016). With ca.750 species, Passifloraceae is one the largest families of vines (Gentry, 1991; Feuillet and MacDougal, 2007) and it includes *Passiflora*, a species-rich genus of angiosperms (Frodin, 2004) with over 600 species (Unpublished data MacDougal and Feuillet, 2019). Most previous studies of *Passiflora* have focused on understanding the extraordinary morphological variation present in the group and advancing alpha taxonomy through new species descriptions (e.g. Masters, 1872; Killip, 1938; Boza et al., 2018). Only in the last decades have there been collaborative efforts to understand the evolutionary relationships of this diverse genus (Feuillet and MacDougal, 2003; Muschner et al., 2003; Yockteng and Nadot, 2004; Krosnick et al., 2013; Buitrago et al., 2018; Sader et al., 2019). Within Passiflora, past efforts to understand the phylogeny of the group led to the delimitation of six subgenera, including Passiflora, Deidamioides (Harms) Killip, Astrophea (DC.) Mast, Tryphostemmatoides (Harms) Killip, Tetrapathea (DC.) P.S. Green, and Decaloba (DC.) Rchb. (MacDougal and Feuillet, 2004; Krosnick et al., 2013, Buitrago et al., 2018). All six of these subgenera have been supported as monophyletic groups by previous phylogenetic analyses using traditional Sanger sequencing of small numbers of nuclear DNA and plastid DNA markers (Krosnick et al., 2013; Sader et al., 2019). Passiflora subgenera have been further subdivided into multiple ranks (supersections, sections, subsection, and series), some of which are supported by morphological, geographical, or molecular data (Kay, 2003; Muschner et al., 2012; Krosnick et al., 2013). Although most previous studies revealed wellsupported relationships at deeper levels (i.e., at the subgenus and supersection levels), they showed lower resolution among species at shallower phylogenetic levels. One particularly diverse group within *Passiflora* whose evolutionary and biogeographic history remains poorly known is *Passiflora* section *Decaloba*, a group that contains around 20% of all *Passiflora* species (Krosnick et al., 2013). The greatest species diversity in section *Decaloba* occurs in the Northern Andes, but this group is widely distributed across the Neotropics and in some subtropical regions (Tropicos®, 2019). Although section *Decaloba* was shown to be monophyletic in a previous study that focused on understanding the broader relationships among the major groups of *Passiflora*, nearly all relationships among species within section *Decaloba* were poorly resolved (Krosnick et al., 2013). Furthermore, because only one individual per species was included in the previous study, the monophyly of species in section *Decaloba* has not been investigated. The timing of divergences and biogeography within section Decaloba are also almost completely unknown. At deeper nodes, Muschner et al. (2012) proposed that the subgenus Decaloba originated in South America, diverged from its sister subgenus Deidamioides 36.8 Million years ago (Ma), and began diversifying 29 Ma (crown age), whereas Abrahamczyk et al. (2014) proposed a more recent date for the divergence of subgenus Decaloba at 24.2 Ma and a split between section Decaloba and section Xerogona at 11.06 Ma. However, because of limited sampling, poor resolution, and a lack of dating in most previous phylogenies that focused on section Decaloba, the geographic origin of the section and the forces that have led to its diversification are poorly known. Although Abrahamczyk (2014) showed that subgenus Decaloba likely originated in South America, it is unknown whether section Decaloba also originated in South America and subsequently colonized Central America, North America, and the Caribbean, or instead whether it originated elsewhere before colonizing the Andes and other parts of South America. Given that the northern Andes are arguably the center of diversity in section Decaloba, one hypothesis is that diversification in section Decaloba may have occurred predominantly in response to the uplift of the northern Andes, which is thought to have created new niches and ecological opportunities as well as geographic barriers that promoted adaptive radiations and allopatric speciation (Hughes and Eastwood, 2006; Lagomarsino et al., 2016; Pérez-Escobar et al., 2017). Uplift in the Northern Andes is thought to have occurred mainly since the late Miocene, with around 60% of their total elevation obtained over the last 10 Ma (Gregory-Wodzicki, 2000); these periods of uplift correspond well with previously estimated stem ages of section Decaloba: 6.5 Ma (Kozak, 2015) and 11.06 Ma (Abrahamczyk et al., 2014). Another biogeographic process identified as important driver of diversification is recent climate fluctuations during the Pleistocene (~2.6 Ma to 11,700 years ago) (Vuilleumier, 1971; Pisias and Moore, 1981; Taylor et al., 1993), as seen in Andean Bromeliads and other lineages (Rull, 2011; Jabaily and Sytsma, 2013; Nevado et al., 2018). A well-resolved, dated phylogeny with adequate taxon sampling of section Decaloba is needed to test these
biogeographic hypotheses, as well as to achieve a broader understanding of the historical biogeographical processes shaping the diversification of Neotropical vines. In this study, we investigated the phylogeny and biogeography of Passiflora section Decaloba. To achieve the greatest taxon sampling and phylogenetic resolution possible, we obtained DNA samples predominantly from herbarium specimens across the whole geographic range of the section. To generate DNA sequence data, we employed 2b-RAD sequencing, a high-throughput, reduced representation DNA sequencing technique suitable for non-model organisms (Wang et al., 2012; Aglyamova and Matz, 2014). We used the resulting genome-wide data to infer a time-calibrated phylogeny and to reconstruct the historical biogeography of the group. The two main goals of our study were to: 1) elucidate the evolutionary history of the group, including identifying major clades and testing the monophyly of species, and 2) reconstruct the biogeography of section Decaloba, including analyzing its geographic origin, path of colonization, and major processes affecting diversification (e.g., uplift of the Andes and/or fluctuations in climate during the Pleistocene). Our results provide the first species level phylogeny of the group and shed light on a historical biogeographical scenario by which species of section Decaloba achieved their present-day distributions across the Neotropics. Our findings contribute both a baseline for future evolutionary and ecological research in Passifloraceae as well as an improved understanding of the spatial and temporal patterns of evolutionary history in Neotropical vines. #### 2. Methods # 2.1. Sample selection Most material used in the study was derived from the Passiflora collections at the herbarium of the Missouri Botanical Garden (MO), as well as loans of *Passiflora* from > 20 herbaria as part of a project focused on the systematics of subgenus Decaloba (Krosnick et al., 2013). We aimed to sample all the ~ 120 species considered to be part of section Decaloba s. str. (clade W of Krosnick et al., 2013; Unpublished data MacDougal and Feuillet, 2019). We reviewed nearly 2000 herbarium specimens representing almost every species in section Decaloba, including both identified and undetermined specimens. We re-evaluated the identifications of all specimens; some samples corresponded to accepted species descriptions, whereas other samples were unclear or appeared to be misidentified, in which case they were assigned a tentative name to be tested using the phylogeny. All the taxonomic names used in this study represent the current and accepted determination for the specimens (see Appendix for more details), but a future publication will address some of the necessary taxonomic changes in some species within section Decaloba (Acha, 2019; Acha and MacDougal, 2021). From these herbarium collections, we sampled the sheets with enough material to obtain $\sim 2~{\rm cm}^2$ of leaf tissue, and on some cases flower or stem tissue, following the destructive sampling policy from MO and other institutions. Whenever possible, we sampled several specimens representing the geographical and morphological diversity for each species, targeting around 5 individuals per species. We prioritized sampling herbarium specimens with an age of collection of <20 years, with the assumption that DNA degrades over time. The outgroups used in this study included samples from three species (P. goniosperma, P. lutea, P. sexflora) in section Xerogona s. lat., the sister clade to section Decaloba (Krosnick et al., 2013). We also included one species from supersection Auriculatae, a more distant outgroup in subgenus Decaloba. (sample P. aff. auriculata 332, Appendix). #### 2.2. DNA extraction All lab work was conducted in the Conservation Genetics Laboratory at Missouri Botanical Garden. We extracted whole genomic DNA from 779 samples using a modified CTAB DNA extraction protocol for plants, with an additional 95% ethanol wash of the DNA pellet (Doyle and Doyle, 1987). We quantified the DNA concentrations in each sample using a Qubit fluorometer (ThermoFisher) and cleaned the samples using a GENECLEAN® turbo kit (MP Biomedicals). As expected for herbarium specimens, the quantity and quality of DNA varied among samples, with only 542 samples containing the \geq 200 ng of DNA required for 2b-RAD library preparation. #### 2.3. 2b-RAD seg protocol To quickly obtain high-quality DNA sequence data across the genome at a relatively low cost, we employed 2b-RAD Seq (Wang et al., 2012). We followed the protocol described by Aglyamova and Matz (2014; available at: https://docs.google.com/document /d/1am7L_Pa5JQ4sSx0eT5j4vdNPy5FUAtMZRsJZ0Ar5g9U/edit), with some modifications. A total of 150-250 ng of DNA was digested using the restriction enzyme BcgI (New England Biolabs), which excises 36 bp long fragments of DNA throughout the genome. Digested DNA was arranged in 96-well plates and then each of 12 unique double-stranded adaptors was ligated to samples in each column. Ligations were then subjected to an amplification test, where each sample was amplified using high fidelity Phusion® PCR mix (New England Biolabs) for 14 PCR cycles. Amplified samples were checked using agarose gel electrophoresis to confirm the success of digestion and ligation. Of the original 542 samples that met our minimum DNA concentration, only 219 successfully amplified. For each plate, the uniquely barcoded samples across a row were pooled and amplified using one of eight uniquely barcoded PCR primers. Thus, when combined with the unique adaptors used for each column, this produced up to 96 uniquely barcoded samples per plate. PCRs were run for 13–15 amplification cycles and then subjected to agarose gel electrophoresis. The resulting 170 bp bands were excised from the gel and purified using a MinElute Gel Extraction Kit (QIAGEN). We quantified the gel-purified PCR product using a Qubit fluorometer, pooled the eight PCR reactions at a concentration of 10 nM, and sequenced them for 1x50 cycles on an Illumina HiSeq 2500 or 4000 sequencer (2017–2018) at Duke University. After including 6 technical replicates, we sequenced a total of 225 samples, which were evenly and randomly divided across three sequencing runs. # 2.4. Data analysis # 2.4.1. Sequencing quality control, assembly of loci, and SNP calling We conducted initial quality assessments of the resulting sequences using FastQC (Babraham Bioinformatics). We then applied the 2bRAD_denovo script written by M. Matz (available at: https://github.com/z0on/2bRAD_denovo) to demultiplex the sequencing reads (sorting them into individuals), and remove barcodes and Illumina adapters. Fig. 1. Examples of floral morphology diversity of the lineages included in this study. A) *P. lutea* (photo credit: J. Richard Abbott), B) *P. gilbertiana* (photo credit: Barry Hammel), C) *P. yucatanensis* (photo credit: Elizabeth Peters), D) *P. penduliflora* (photo credit: Ronald Boender), E) *P. murucuja* (photo credit: Ronald Boender), G) *P. hyacinthiflora* (photo credit: Alexandra Hernández), H) *P. alnifolia* (photo credit: RJR Vanderplank), I) *P. Pascoensis* (photo credit: Tatiana Erika Boza Espinoza), J) *P. misera* (photo credit: Jorge Ochoa). All the pictures are reproduced with the authors permits. Lastly, we used FastX toolkit (available at: http://hannonlab.cshl.edu/fastx_toolkit/) to remove low-quality sequences, retaining reads that had \geq 90% of the bases with a minimum quality score of 20 and an input quality ASCII offset of 33. Next, we used iPyrad v0.7.28 (Eaton and Overcast, 2020) with the parameters described in Supplementary Data table S1 to assemble loci de novo. For all analyses, the aligned dataset included the entire 36-bp RAD fragment for each locus, including both variable and invariable sites. To optimize the number and quality of called loci, the assembly pipeline was run several times, varying the minimum number of samples in which a locus must be present to be called (4, 8, 12, 16, 20 and 22). We found the optimal resolution and bootstrap support when a locus was present in a minimum of 12 samples (analysis not shown), and this value was employed for all subsequent analyses. We then calculated the percentage of missing data per sample (supplementary material S2) and discarded any sample with > 95% missing data if there was another accession of the same species with less missing data. We also generated an additional data set where we employed a more restrictive filter, discarding samples with>50% missing data, but obtained lower resolution and support when using this data set in downstream phylogenetic analyses (data not shown). # 2.4.2. Phylogenetic analyses We initially used the full dataset containing 217 samples (including some duplicates) to reconstruct the phylogeny using RAxML v8.2.10 (Stamatakis, 2014). We used JModelTest2 (Darriba et al., 2012) to determine the optimal model of evolution, which was the GTRCAT model; we therefore conducted analyses using this model with 1000 Fig. 2. Map of the collections and ecoregions used for biogeographical analyses in this study. The different symbols represent the clades in Fig. 3. For the ecoregion names and color legend, see Fig. 5. The base map shows a digital elevation model, with higher elevations indicated by progressively darker shading, and international borders. rapid bootstraps. We also employed the transfer bootstrap expectation (TBE) approach proposed by Lemoine et al. (2018) to quantify support for nodes in the RAxML phylogeny. The main advantage of TBE is that it allows for a degree of uncertainty or instability in the nodes, calculating a transfer index per tip and node. In contrast, Felsenstein's bootstrap proportions (FBP) discards nodes with some conflict in placement, even those that
are "mostly correct". TBE has been shown to recover high support at medium-depth and deeper nodes, where frequently FBP fails. To calculate the TBE values for our RAxML phylogeny, we uploaded our bootstrap trees file and our best tree file to an online tool for TBE fast estimation (https://booster.pasteur.fr/, Lemoine et al., 2018). We considered high support values to be those > 85% for TBE and > 75% for FBP. We also conducted parsimony phylogeny reconstruction of the full data set using PAUP* 4.0a169 (Swofford 2003). In all parsimony analyses, we conducted heuristic searches using 1000 random addition replicates and TBR branch swapping, saving 1 tree per replicate. Bootstrap analyses (1000 replicates; Felsenstein 1985) were used to assess branch support using a heuristic search with TBR branch swapping, with 10 random additions per replicate, saving no>1 tree. per replicate. # 2.5. Divergence time estimation and historical biogeographical reconstruction Because all subsequent analyses required the inclusion of only one individual per species, we generated a reduced dataset that included one individual per lineage. We inspected phylogenies based on the full data set (see results) and in each monophyletic species, we retained the individual in the analysis with the lowest percentage of missing data. When a species was non-monophyletic, we retained one randomly selected individual from each uniquely placed group. We employed BEAUti and BEAST v2.5.2 (Bouckaert et al., 2014) to generate a time-calibrated phylogeny using the reduced assembly, with 100 million generations and a GTR substitution model, gamma rate, and relaxed log normal clock model. Additional priors included a Yule speciation model and two calibration dates: 1) the Galapagos Santa Cruz island date (0.7 - 1.5 Ma, Hickman and Lipps, 1985), which we parameterized using a uniform distribution and, 2) a secondary calibration from Abrahamczyk et al. (2014) based on their estimated age for section Decaloba of 11.06 Ma, which we parameterized with a normal distribution. Additionally, we used a chronogram of the reduced dataset produced using treePL v1 (Smith and O'meara, 2012) as our starting tree, while using the same calibration points described above. We explored the BEAST log results in Tracer v1.7.1, summarized posterior trees in TreeAnnotator v.2.5.2 (Rambaut et al., 2018), and visualized the phylogeny using R, the ggtree package (v.1.4.2), and its dependencies (R Core Team, 2021; Yu et al., 2017; Yu et al., 2018; Yu et al., 2020). For the historical biogeographical reconstruction, based on general patterns of endemism and habitat types occupied by sect. *Decaloba*, we divided the range into ecoregions (Fig. 2) following the Commission for Environmental Cooperation (CEC) (1997) and Griffith et al. (1998). The 11 ecoregions were: A) North America, including northern Mexico; B) Mainland Central America (units 13, 14 and 15 in Griffith et al., 1998); C) Greater Antilles (unit 16.2); D) Bahamas (unit 16.1); E) Lesser Antilles Fig. 3. Maximum likelihood phylogeny of Passiflora section Decaloba resulting from the RAxML analysis including parsimony analysis results and leaf image rendering from herbarium specimens. Support values generated using transfer bootstrap expectation (TBE) and Felsenstein bootstrap (FBP) are shown above branches in the format: TBE/FBP. These values are in bold if the node had > 70% parsimony bootstrap support in the parsimony analysis. Collapsed clades include the number of total samples in parentheses next to the names. The leaf outlines represent some of the accessions sampled in this study (scale not proportional to real size). The Figure is divided into following three panels: A) the Central American clade, with the South American clade collapsed, B) South American clades 1-6, and the Central American, SA7 and SA8 clades collapsed, and C) South American Clades 7 and 8. with the Central America and SA1-SA6 collapsed. Triangles collapsed clades. OG: outgroup, CA: Central America clades, SA: South America clades. For a non-collapsed complete phylogram, refer to Supplementary material 7. (unit 16.3); F) Guianas region (units 17.2, 20.1, 20.3 and 21.1); G) Northern Andes (unit 17.3); H) Choco (unit 17.1); I) Central-South Andes and the dry Chaco (units 18.3 and 22.1); J) the Amazonas region plus the Brazilian Cerrado dry biome combined (units 20.2, 20.4, 20.5 and 21.2); K) the Brazilian Atlantic Forest plus the humid Chaco biome combined (units 21.40, 22.2 and 23.1) (Fig. 2). Although some of the ecoregions were discontinuous (e.g., North America and Central America, which differentiated between tropical dry forest and wet forest), we did not alter the ecoregions of Griffith et al. (1998) because none of our samples occupied one of these areas. Further, other studies of the region showed similar discontinuous patterns in the delimitations of ecoregions (Ricketts et al., 1999; Olson et al., 2001). The corresponding base maps and additional metadata can be found at the following websites: https://www.epa.gov/eco-research/ecoregions-north-america http://ecologicalregions.info/. To assign the current distributions of species to the 11 ecoregions, we collated information on species geographical ranges using several available data sources. We mapped all section Decaloba accessions in the Tropicos® database using QGIS (QGIS Development Team, 2019) and complemented it with all the available information about their distribution. The Tropicos® database also provided us with elevation and collection information from nongeoreferenced specimens that was used in further interpretation of the results. Ancestral range reconstruction analysis was conducted with the program RASP v4.0 (Reconstruct Ancestral State in Phylogenies; Yu et al., 2015), using our maximum clade credibility chronogram generated in BEAST, which incorporates the following models: DEC (Dispersal-Extinction-Cladogenesis; Ree and Smith, 2008; Massana et al., 2015), DEC + J (DEC + Jump parameter; Matzke, 2014), DIVALIKE (Dispersal Vicariance Analysis with Likelihood implementation; Ronquist, 1997, Matzke, 2014), BAYAREALIKE (Bayesian inference for discrete Areas with Likelihood implementation; Landis et al., 2013; Matzke, 2014), BAYAREALIKE + J (BAYAREALIKE + Jump parameter; Matzke, 2014), as implemented in BioGeoBEARS (Matzke 2013a, 2013b, 2014; R Core Team, 2021). We ran our ancestral range reconstruction analyses using the maximum clade credibility chronogram generated in BEAST and the previously mentioned six models (Supplementary Table S4A) to improve our ability to detect erroneous reconstructions. We interpreted congruent ancestral range reconstruction results for a given node across different models as indicative of high support for that node's reconstruction state(s). In RASP analyses, we ran the non-stratified ancestral range reconstruction using a maximum of 2–5 areas per node and 250 bootstrap pseudo-replicates. Additionally, we excluded range combinations that included disjunct distributions and considered the node reconstructions to be well supported when they reached a probability $\geq 75\%$. We used the model likelihood-ratio test (Supplementary Table S4 B) in RASP to select the best model based on comparisons of Akaike information criterion (AIC) values using standard information-theoretic approaches (Burnham and Anderson 2004). #### 3. Results #### 3.1. Locus assembly and SNP calling After removing accessions with poor sequence quality, the full data set included 206 unique samples (Appendix, GenBank BioProject ID: PRJNA681354, study ID: SRP295475), including sequences from: 1) seven accessions representing four outgroup taxa, 2) 181 accessions representing 91 of the ~ 120 known species in section Decaloba, including both species with accepted published names as well as unpublished names, and 3) 18 specimens with an ambiguous determination ("sp.", "cf." or "aff." designations) that included putative new and undescribed new species or specimens with insufficient information to be identified (appendix). In the full dataset, the total number of loci passing the initial sequencing quality control filter was 513,321. After applying quality control filters in iPyrad as described in Supplementary Table S1, the final filtered data set contained 11,778 concatenated loci, with each locus 36 bp in length, resulting in a total alignment of 424,008 bp, which included both variant and invariant sites. Missing data per sample Fig. 3. (continued). ranged from 48 to 98% (Supplementary Table S2), with most samples having between 62 and 92% missing information. #### 3.2. Results of phylogenetic analyses The maximum likelihood (ML) tree is presented in Fig. 3A-C, including results for the parsimony analysis. Because of the large number of accessions included in this phylogeny, we collapsed samples corresponding to the same species if they formed monophyletic groups, but indicated the number of samples included in the terminal in parentheses. Hereafter, all support values will refer to the TBE support if not specified otherwise. TBE instability index per taxa is listed in Supplementary Table S3. Relative to the outgroups representing supersection Auriculatae (sample P. aff. auriculata 332) and section Xerogona s. lat. (P. goniosperma, P. lutea (Fig. 1A), P. sexflora), section Decaloba was strongly supported as monophyletic with 100% support (Fig. 3), consistent with previous studies (Krosnick et al., 2013). All taxa in section Decaloba were grouped into two large, well supported clades: a predominately Central American clade (92% support) comprising 71 accessions representing 28 taxa occurring mainly in Central America but also in South America (Fig. 3A), and a predominately South American clade (100% support), comprising 128 accessions in 76 taxa (Fig. 3B and 3C). # 3.2.1. Central American clades (CA1 and CA2) The Central American
clade was divided into two strongly supported clades, referred to as clades "CA1" and "CA2" (Fig. 3A, and Supplementary Figure S1), both of which showed medium to high values of support in most internal branches. The CA1 clade (85% TBE and 35% FBP) contained 26 accessions from 9 taxa (P. standleyi, P. lancearia, P. boenderi, P. jorullensis var. jorullensis, P. aff. mexicana, P. jorullensis var. salvadorensis, P. ilamo ined., P. gilbertiana (Fig. 1B) and P. apetala) that are distributed from southwestern USA and western Mexico to the Isthmus of Panama. All species represented by multiple accessions were monophyletic except the two varieties of P. jorullensis, which did not form a monophyletic group. The CA2 clade (100% TBE and 90% FBP) contained 45 accessions from 19 taxa (P. affinis, P. nubicola, P. yucatanensis (Fig. 1. C), P. biflora, P talamancensis, P. subfertilis, P. insolitii, P. helleri, P. cupraea, P. coronapapillata ined., P. penduliflora (Fig. 1D), P. calcicola, P. oblongata, P. sp. 612, P. bicornis, P. cubensis, P. tulae, P. orbiculata and P. murucuja (Fig. 1E)). This clade is distributed from the Edwards plateau in Texas, USA to the Ecuadorian Andes, the Bahamas, the Antilles, and northern Venezuela. In CA2, all species represented by multiple accessions were monophyletic except P. biflora and P. penduliflora. Fig. 3. (continued). #### 3.2.2. South American clades (SA1-SA8) In the large South American clade (Fig. 3B, 3C and Supplementary Figure S1), five early diverging, small subclades (SA1-SA5) were placed as successive sisters to the remainder of the SA clade. The first, Clade SA1, had 100% support and comprised a pair of accessions (*P. lyra* and *P. cf. lyra*) from Colombia and northwest Ecuador (400–900 m) (Fig. 3B). The clade containing the remaining accessions in the SA clade was strongly supported (99%) and was divided into two groups, SA2, which was weakly supported (58%) and a large clade containing clades SA3-8, which was strongly supported (97%). The SA2 clade and contained six accessions representing four species (*P. vespertilio*, *P. anfracta*, *P. micropetala* and *P. rotundifolia*) all from lowland areas of Ecuador, Peru and the Lesser Antilles. Within the clade containing SA3-SA8, SA3 was strongly supported (100%) and placed as sister to a strongly supported clade (96%) containing clades SA4-8. SA3 contained four accessions representing two species: *P. sandrae,* from the central-eastern regions of Panama and *P. occidentalis* ined. from the central region of Panama to the northernmost Ecuadorian coast (Fig. 3B). Within the clade containing clades SA4-8, clade SA4 (Fig. 3B; 73%) included 9 accessions representing 6 species (*P. caduca* ined., *P. panamensis*, *P. sp.*, *P. misera*, *P. punctata* and *P. colinvauxii*) distributed from the eastern region of Panama south to the Northern Andes in Colombia, coastal Ecuador, and the Galapagos Islands. Two species represented by multiple accessions in clade SA4 were not monophyletic: **Fig. 4.** BEAST maximum credibility chronogram. Values above the branches indicate Bayesian posterior probabilities and the bars at each node represent 95% credibility interval for the clade age in millions of years. Geological epochs limits are shown in the × axis. The two calibration points are highlighted in blue on the node to which they were assigned. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) P. colinvauxii was nested within a clade containing the two P. punctata accessions (P.punctata056 and P.punctata057), rendering P. punctata paraphyletic (Fig. 3B). Passiflora misera 135 from Paraguay was not grouped with the remaining P. misera samples, which were placed in the SA7 clade (Fig. 3C and Supplementary Figure S1). Sister to SA4 was a strongly supported (94%) group that contained clades SA5–SA8. Within this group, a well-supported (91%) SA5 clade (Fig. 3B) contained 7 accessions representing 5 species (P. andersonii, P. stenosepala, P. tuberosa, P. yucatanensis and P. tricuspis) that are mostly distributed from the Lesser Antilles (P. andersonii and P. stenosepala) to Trinidad and the Venezuelan Andean and coastal regions (P. tuberosa). Two species placed in clade SA5 were not monophyletic: Passiflora yucatanensis 478 was not grouped with the remaining accessions of P. yucatanensis in clade CA2, and the three accessions of P. tuberosa were all placed in clade SA5 but did not form a monophyletic group. Sister to SA5 was a strongly supported group (95%) containing clades SA6-SA8. Within this clade, the strongly supported (94%) clade SA6 (Fig. 3B) contained 29 accessions from 15 taxa (*P*. aff. tribolophylla, *P*. pilosissima, *P*. mollis, *P*. cuspidifolia, *P*. bogotensis, *P*. hyacinthiflora, *P*. kalbreyeri, *P*. cf. cuneata, *P*. bucaramangensis, *P*. micrantha, *P*. trinervia, *P*. andreana, *P*. alnifolia (Fig. 1H), *P*. chelidonea and *P*. tribolophylla). Species in clade SA6 typically occupy Andean humid montane forest ranging from Colombia to Bolivia, but can also be found in Venezuela. Most species represented by more than one sample placed in this clade were not monophyletic, except for *P*. bogotensis, *P*. kalbreyeri. Sister to clade SA6 was the strongly supported (95%) *P*. magdalenae + SA7 + SA8 clade containing 71 accessions and 46 taxa (Fig. 3B and C). In this group, the single accession of *P*. magdalenae, which is found in the central inter-Andean Valleys of Colombia, was placed as a strongly supported sister (95%) to two strongly supported groups, the SA7 clade (98%) and the Fig. 5. Ancestral range reconstruction of Passiflora section Decaloba. The tips contain the current area assigned to the taxa in parentheses together with a colored circle representing the assigned area. Pie charts at each node represents the probability of an ancestral area. Colors for biogeographical areas that we modeled (ecoregions coded as biogeographical provinces) match those in Fig. 2, except for the categories that represented a two-area range combination. The ecoregions are the following: A: North America, including northern Mexico, B: Central America, C: the Greater Antilles, D: the Bahamas, E: the Lesser Antilles, F: the Guianas region of South America, G: the Northern Andes mountains range, H: Chocó, I: the Central-Southern Andes mountains and the dry Chaco, J: the Amazonas region plus the Brazilian Cerrado dry biome combined, and K: the Brazilian Atlantic Forest plus the humid Chaco biome combined. The symbol and black color represent areas with < 10% probability of ancestry. The xaxis represents time in millions of years ago (Ma). SA8 clade (91%). The SA7 clade comprised 34 accessions representing 22 taxa (*P. heptantha* ined., *P. tatei*, *P. urnifolia*, *P. pardifolia*, *P. ichthyura*, *P. tricuspis*, *P.* sp. nov., *P. indecora*, *P. hexadenia* ined., *P. ketura* ined., *P. punctata*, *P. pascoensis* (Fig. 11), *P. sp. nov.*, *P. cana* ined., *P. nana*, *P. chrysosepala*, *P. viridescens*, *P. hirtiflora*, *P. carnosisepala*, *P. telesiphe*, *P. quadriflora* and *P. rotundifolia*). Species in this clade are distributed from the Ecuadoran Andes to central Bolivian mountain forests and southern Brazil. Within Clade SA7, most internal branches are well-supported. The clade was subdivided into two groups that correspond to geography, with the smaller clade (7 taxa., 96% TBE) ranging from the eastern slopes of the Andes to the Amazon basin and the Atlantic forest, and the larger clade (15 taxa., 95% TBE) occurring only in the Andes. Most species in clade SA7 represented by multiple accessions were supported as monophyletic except for *P. tatei, P. telesiphe* and *P. indecora*. Additionally, three accessions were unexpectedly included in the SA7 clade: the sample *P. punctata* 192 was not placed with the other *P. punctata* accessions in SA4 (Fig. 3A and B), *P. rotundifolia* 700 was placed in this clade whereas the rest of *P. rotundifolia* accessions were found in SA3 (Fig. 3B) and *P. tricuspis* 625 was not placed with other *P. tricuspis* accessions in SA8. The SA8 clade contains 37 accessions and 24 taxa (*P. candollei*, *P. leptoclada*, *P. tricuspis*, *P. vespertilio*, *P. cf. cuspidifolia*, *P. smilacifolia*, *P. aff. micropetala*, *P. micropetala*, *P. cf. telesiphe*, *P. jeannetteae* ined., *P. aff. pohlii*, *P. saxicola*, *P. sp. nov.*, *P. aff. trifasciata*, *P. occidentalis*, *P. urnifolia*?, *P. trifasciata*, *P. tricuspis*, *P. aff. tricuspis*, *P. misera* (Fig. 1J), *P. transversalis, P. poeppigii, P. amalocarpa* and *P. leptoclada*). This clade's distribution is the broadest of all section *Decaloba*, with species distributed from eastern Panama to the Andes, extending to the Guianas, Brazil, Paraguay and part of Argentina. Clade SA8 also contains 8 nodes with low support (<80%) as well as six apparently non-monophyletic species (*P. leptoclada, P. trifasciata, P. misera, P. amalocarpa, P. vespertilio* and *P. tricuspis*) (Fig. 3C and suppl. Fig. S1). #### 3.3. Divergence time estimation and biogeographic analysis After removing duplicate accessions of monophyletic species as identified by phylogenetic analyses based on the full data set, the reduced data set contained 109 unique samples (marked by an asterisk in the Appendix), including: 1) four accessions representing four outgroup taxa, 2) 89 accessions representing monophyletic species in section *Decaloba*, including both accepted published names and unpublished names, and 3) 16 specimens with an ambiguous determination (sp., cf. or aff. designations) that include potential new species or specimens with insufficient information to be identified. The total number of loci passing the sequencing quality filters was 301,700. Applying the filters in iPyrad as described in supplementary table S1, resulted in a final data set of 7,299 loci, each of which was 36 bp in length, such that the final
assembly was 262,764 total bp in length. Results of BEAST analyses of the reduced data set are shown in Fig. 4. We recovered section *Decaloba* as monophyletic (posterior probability = 1). Although half the nodes in the BEAST tree had posterior probabilities (PP) > 0.95, relationships in this tree overall showed lower resolution and support than those found in the RAxML tree. Like the RAxML tree, BEAST recovered the main two Central American (CA) and South American (SA) clades. Within the CA clade, accessions formed two strongly supported, smaller clades that largely corresponded to Clades CA1 and CA2 in the RAxML tree. In contrast, relationships among taxa in the SA clade differed significantly between the RAxML and BEAST trees. The BEAST tree did not recover RAxML clades SA1-SA5 and instead placed these samples in other large clades. Both RAxML and BEAST topologies recovered the SA6 clade, but RAxML showed greater support values for this clade (94% TBE) and its internal nodes (67-100%) than BEAST (0.49 PP clade, 0.46-1.00 internal nodes). Clades SA7 and SA8 from the the RAxML tree were not recovered in BEAST, which instead placed the samples into one large clade, with lower support for relationships than the RAxML tree. We used the BEAST chronogram and RASP to analyze the biogeography of section Decaloba. AIC scores showed that the best-supported model for our dataset in all four RASP analyses was the DEC + J model (Supplementary table S4 B). Results were similar when the maximum number of areas allowed per node/tip ranged from 2 to 5 (data not shown), except for an increase in uncertainty in some nodes as the maximum number of areas increased; we therefore present only the results of analyses allowing a maximum of two areas per node (Figs. 2, 5 and Supplementary material S4 and S5). Globally, RASP showed evidence for 88 dispersal, 40 vicariance and 2 extinction events. The most common dispersal pattern was between the Central–Southern Andes mountains (I) and the Northern Andes mountains (G), with five dispersal events; these were also the areas with the highest numbers of speciation events (I:14, G:27), along with Central America (B) (13). Results of biogeographic analyses showed that the most recent common ancestor of all section *Decaloba* diverged from all other passion flowers in the late Miocene around 10.4 Ma (95% HPD: 6.5–13.8 Ma) and that its range most likely occurred in mainland Central America (Fig. 5, node 215). The Central American clade (CA) and the South American Clade (SA) diverged 7.8 Ma (95% HPD: 5–10.9 Ma) in the late Miocene–Pliocene. The common ancestor of the CA clade (Fig. 5, node 136) showed a highly supported (93%) origin in mainland Central America around 5.7 Ma (95% HPD: 3.7–7.7 Ma), and most early-diverging nodes in the CA clade (i.e., nodes 132–135) showed ancestral ranges in Central America. In the CA clade, range reconstructions showed the following range shifts: 1) a range expansion of *P.* aff. *mexicana* into North America (i.e., from B to AB; Fig. 5) around 0.58 Ma (95% HPD: 0.2–1.3 Ma), 2) an early dispersal into North America (i.e., from B to A; Fig. 5) around 4.3 Ma (95% HPD: 2.7–6.5 Ma), giving rise to *P. affinis*, 3) a range expansion at node 131 into the Major Antilles around 2.8 Ma (95% HPD: 1.6–4.1 Ma), resulting in two clades occurring solely in the Major Antilles (i.e., nodes 121–128; Fig. 5), and 4) a dispersal at node 129 from the Major Antilles to the Bahamas around 1.8 Ma (95% HPD: 0.8–2.6 Ma), giving rise to the *P. cupraea* Bahamas populations. The common ancestor of the SA clade diverged around 7.2 Ma (95% HPD: 4.9–9.8 Ma). The ranges of the first early diverging lineages in this clade (nodes 212–214) were reconstructed as occurring either in Central America or the northern Andes, and several dispersal events or range expansions were also inferred at these nodes, including a colonization of the Choco (node 137, giving rise to P. occidentalis and P. sandrae), and a dispersal to the Guianas and the Lesser Antilles (nodes 138 and 139). After the first three equivocal nodes in the SA clade, the next divergence (node 211) occurred around 6 Ma (95% HPD: 3.9-8.9 Ma) and had an ancestral range inferred in the north Andes, followed by two major clades (nodes169 and 210), also with ancestral ranges in the north Andes. Beginning at node 169, most nodes had ancestral ranges in the north Andes, but we observed several subsequent range shifts within the clade, all of which occurred in the last 2 Ma: 1) two independent dispersal events to the Choco/Galapagos region (H) (nodes 141 and 145), 2) two independent dispersal events to the Lesser Antilles (nodes 144 and 150) and, 3) a colonization event into the Guianas (node 150). The other SA clade corresponded mostly to the accessions in clades SA7-8 from the RAxML tree. Several range shifts were inferred in this group: 1) dispersal from the northern to the central and southern Andes that occurred 4.5 Ma (95% HPD: 2.9–6.4 Ma), which gave rise to several clades with ranges predominantly in the southern Andes, and 2) a colonization of Amazonas and Cerrado around 3 Ma (95% HPD: 1.9–4.3 Ma) (node 205) and 3) two or more instances of colonization of the Atlantic forest: one that occurred > 1 Ma, giving rise to *P. pardifolia* (node 184), and several possible dispersal events from Amazonas into the Atlantic forest (at nodes 191, 193 and 195) around 2.5 Ma (95% HPD: 1.6–3.5 Ma). #### 4. Discussion In this study, we reconstructed the phylogeny of Passiflora section Decaloba (Passifloraceae) using samples obtained almost exclusively from herbarium specimens, and employing a recently developed restriction-associated DNA sequencing approach, 2b-RAD (Wang et al., 2012). The use of herbarium specimens allowed us to achieve nearly complete taxon sampling of the ~ 120 species in section Decaloba, or around one fifth of all the species in the genus Passiflora. The 2b-RAD approach employed in this study provided a remarkably wellsupported and well-resolved phylogeny of the group, despite the fact that section Decaloba represents a relatively rapid radiation (i.e., ~120 species evolving in only ~ 7.8 Ma), in which conventional data previously failed to resolve relationships. Furthermore, a substantial portion of the nodes in the phylogenies were well resolved despite many samples having a high percentage of missing data, and like other previous studies (e.g., Tripp et al., 2017), found that resolution increased to a certain point as the percentage of missing data increased. Additionally, the use of TBE (Lemoine et al., 2018) provided support for phylogenetic relationships that FBP and the parsimony analysis failed to provide. Although RAD-seq approaches have been used successfully to reconstruct patterns of evolution in groups even older than 60 Ma (Ree and Hipp, 2015), our results indicate that the 2b-RAD approach is particularly useful for clarifying relationships in rapid radiations. The overall approach employed in this study may be useful for future studies that aim to elucidate the evolutionary relationships among broadly distributed, highly diverse, and poorly accessible groups of plants. The goals of our study were to elucidate the evolutionary history of section Decaloba, including identifying major clades and testing the monophyly of species, and to reconstruct the biogeography of the group, including analyzing its geographic origin, path of colonization, and major processes affecting diversification (e. g., the uplift of the Andes and fluctuations in climate during the Pleistocene). The center of diversity of Section *Decaloba* is located in the northern Andes and previous analyses suggested a South American origin to the larger group containing subgenus Decaloba (Abrahamczyk, 2014), similar to some Bromeliaceae (Givnish et al., 2011, 2014), Solanaceae (Dupin et al., 2017) and Bignoniaceae clade's (Lohmann et al., 2013; Carvalho Francisco and Lohmann, 2020). However, our analyses revealed a Central American origin to the clade, comparable to South American Valerianaceae (Bell and Donoghue, 2005; Bell et al 2012) and Guettardeae (Manns et al., 2012). Another possible scenario for the biogeographical history of section Decaloba is that it originated in North America followed by a progressive dispersal southward, like American Stachydeae (Roy et al., 2013) or the neotropical Prunus (Chin et al., 2014). The hypothesis of a North American origin is moderately supported by the available fossil records for Passifloraceae (Hermsen, 2021), the location of which suggests a possible European origin for the family and a dispersal in the Eocene across the North Atlantic Land Bridge to North America (Tiffney, 1985), with a subsequent colonization from North America to South America. However, additional sampling of outgroups and a more indepth analysis of the supersection or subgenus Decaloba is necessary to test these hypotheses. From its origin in Central America, Section Decaloba then diverged into two major clades (the SA and CA clades); we discuss important subclades, biogeography and monophyly of species in each of these clades in the next section. #### 4.1. Central America After diverging from the SA clade 7.8 Ma, the CA clade initially remained species-poor for several million years. Diversification began to occur around 4 Ma, possibly as the result of the geologic and environmental changes resulting from the formation and closure of the Isthmus of Panama. The number of species in the CA clade rapidly increased from 4 Ma until the present, with a large increase in diversification occurring in the last 2 Ma, likely in response to the rapid, cyclical fluctuations in temperature, aridity, and sea level that occurred during the Pleistocene (e.g., Leyden, 1984). Diversification also occurred as the result of the colonization of new habitats through dispersal to the Greater Antilles (clade CA2). Interestingly, phylogenies indicate that
the species in the Greater Antilles likely originated from two separate dispersal events, resulting in a pattern where the species on an island are more closely related to those on different islands than to those that co-occur on the same island. It also appears that one species in mainland Central America likely originated via dispersal back to the Central American mainland from the Greater Antilles (P. bicornis). Species in the CA1 clade are distributed in Central America and occupy montane forest (around ~ 1500 m), except for P. lancearia, which can occur at lower elevations. All species in this clade have disc shaped-flowers (Fig. B) with white, yellow or red corona elements and bilobed leaves (Fig. 3A), except for P. lancearia, which is early diverging within the clade and has elliptic leaves. Species in clade CA2 are distributed from the Edwards plateau in Texas, USA to the Colombian Andes, the Bahamas, the Antilles, and northern Venezuela. Several of the species in clade CA2 were recognized by Killip (1938) as forming part of three distinct subgenera that correspond to red/pink elongated or green tubular flowers with hummingbird or bat pollination syndromes (Fig. 1D and E). The phylogenetic relationships and pollination biology of the two clades occupying the Greater Antilles, which generally have elongated flowers, were studied in depth by Kay (2003), and we obtained a similar topology but with higher support values for relationships among species. #### 4.2. South America Our analyses suggest that the SA clade experienced an early range expansion into the Andes prior to the formation of the isthmus of Panama (Bacon et al., 2015; O'Dea et al., 2016), supporting the hypothesis that the Great American Biotic Interchange occurred before the closing of the isthmus in several pulses, one of which coincides with the date of the dispersal of the SA clade into South America (Bacon et al., 2015). One possible way this colonization was achieved is through seed dispersal, which is a strong driver of plant speciation and therefore of biogeographical patterns (Givnish, 2010). Yet, very little is known about seed dispersal in Section Decaloba. Seed dispersal ecology in Passiflora varies across clades, with some clades likely dispersed by small mammals (Cáceres, 2002), birds (Macedo and Prance, 1978; Carlo and Morales, 2016) and even crocodilians (Platt et al., 2013). Section Decaloba and many species of Subgenus Decaloba share the same type of fruits: small berries, black when mature, which are suspected of being dispersed by birds (Ulmer and MacDougal, 2004), which may have facilitated dispersal across the isthmus of Panama; however, additional research on the seed dispersal ecology in this clade is needed to evaluate this hypothesis. Our results strongly suggest that the colonization of the Northern Andes occurred once, giving rise to a rapid radiation that likely diversified both in response to new habitats made available through the uplift of the Andes as well as fluctuations in environmental conditions during the Pleistocene (Baker et al., 2020). In particular, our results showed that most speciation events in the South American clade of section Decaloba occurred during the Pleistocene. In the northern Andes, instead of the latitudinal shifts in vegetation that occurred in North America and Europe, Pleistocene glacial cycles largely resulted in vertical shifts in montane vegetation zones, with plants moving higher in elevation during the warmer interglacial periods and lower in elevation during the colder glacial periods; for example, the forest line was between 1200 and 1400 m lower in elevation during the Last Glacial Maximum (van der Hammen and Cleef, 1986; Hooghiemstra and Van der Hammen, 2004; Hooghiemstra et al., 2006; Graham, 2009; Jomelli et al., 2014; Nevado et al., 2018). These vertical displacements resulted in the expansion of available habitat and increased habitat connectivity when vegetation zones shifted lower in elevation during glacial periods and a contraction of available habitat and connectivity during interglacial periods as suitable habitat became isolated to higher-elevation areas (Simpson,1974; Flantua et al., 2014; Flantua and Hooghiemstra, 2018). Thus, populations of Andean plants such as Passiflora may have experienced cyclical isolation during the Pleistocene, leading to high rates of diversification via repeated allopatric speciation. After the colonization of the northern Andes, the SA clade of *Passiflora* subsequently dispersed into other areas of South America. Surprisingly, the adjacent Choco region is home to only five species in section *Decaloba* and was colonized several times from the Andes and the Amazon. The Amazon and Brazilian Atlantic Forest ecoregions were colonized recently from the Andes, lending support to the theory that many Amazonian taxa originated through dispersal from the Andes (Gentry, 1982; Upham et al., 2013). The Lesser Antilles were also colonized from South America, following a similar pattern found previously for other organisms occupying these islands (Santiago-Valentin and Olmstead, 2004; Maunder et al., 2011), such as the modern colonization events of the Lesser Antilles observed in birds (Ricklefs and Bermingham 2008). In clades SA1-SA4, many of the observed relationships have taxonomic implications. The SA1 clade includes two specimens identified as *P. lyra* and *P. cf. lyra*. Both specimens occupy lowland areas and are morphologically similar. Although *P. lyra* was described originally from the Caribbean region of Venezuela, the *P. cf. lyra* sample is from Ecuador, suggesting that the range of *P. lyra* is broader than originally thought, extending into Colombia and Ecuador. In clade SA2, we suspect that the placement of many taxa in this clade may be an artifact of low levels of informative data, as it is composed primarily of samples with high to moderate transfer index values such as accession P. micropetala 512, which has the greatest transfer index value of all samples. In particular, the placement of *P. micropetala* 512 and *P. rotundifolia* in the SA2 has low support; we suspect that P. rotundifolia is closely related to P. kalbreyeri in the SA6 clade based on their similar morphology and distribution from the Lesser Antilles to the Venezuelan coast, respectively. Clade SA3, which is composed of *P. sandrae* and three accessions of P. occidentalis, contains what we currently identify as the true P. occidentalis. The other sample identified as P. occidentalis is placed in clade SA8; we suspect this is another case of morphological convergence that merits further study to determine whether it represents a new species. Clade SA4 includes the greatest concentration of poorly known species, which are distributed from eastern Panama to the western slope of the Andes and the Galapagos Islands (P. colinvauxii). The Galapagosendemic species is nested within a variable species, P. punctata, which occurs in the Choco. P. punctata is a Linnaean species described from Peruvian material with no type specimen, and based on our results, it is polyphyletic, as another accession identified as this species placed in clade SA7. Additional research on *P. punctata* is necessary, as it is likely that the name may have been applied to more than one species. In the SA5 clade, we found two cases of paraphyly for the species *P. yucatanensis* and *P. tricuspis*. Most accessions of *P. yucatanensis* were placed in the CA2 clade; if the accession P.yucatanensis478 (which was collected in Quintana Roo, Mexico) is correctly placed, then it would indicate that a long-distance dispersal event from the Venezuelan coast to Quintana Roo-Mexico occurred, although a possible incorrect placement is also plausible given its relative high transfer index. One accession of the polyphyletic species *P. tricuspis* 515 was also placed in this clade, as well as in three different places in clades SA7 and SA8. Additional research focusing on *P. tricuspis* is needed, as we suspect that it currently encompasses several independent lineages that have been lumped due to morphological similarities, which is in part supported by the fact that the species has previously been divided into three varieties (Killip, 1938; Zuloaga et al., 2008). In the larger South America clades (SA6, SA7 and SA8), the number of species keeps growing and the ambiguous taxonomy of some groups makes the systematics of most of these species a challenge. Furthermore, we recovered strong vicariance patterns that support phylogenetic allopatric breaks in the Andean species (e.g. Marañon river valley, see Fig. 1 in Hazzi et al., 2018). Clade SA6 is distributed along both slopes of the Andean mountain chain from Venezuela to Ecuador and is distinguished morphologically by having leaves that tend to be longer than they are wide (Fig. 3B). Their flowers are small, white, disc-shaped with some traces of purple (similar to Fig. 1 H), except P. hyacinthiflora (Fig. 1G) and P. trinervia, which both have tubular pink flowers thought to be an adaptation for hummingbird pollination (Ocampo Pérez and Coppens d'Eeckenbrugge, 2017). However, despite the strong geographic and morphological characters uniting clade SA6, most species within the clade are highly polyphyletic; extensive additional research is necessary to clarify species limits (Appendix). Most species with multiple accessions in the SA7 clade are monophyletic except *P. tatei, P. telesiphe* and *P. indecora*. Given that this is one of the youngest clades, one explanation for the paraphyly in these and other species is incomplete lineage sorting (ILS), as found in other cultivated (Yockteng et al., 2011) and wild (Turchetto et al., 2018) *Passsiflora*. ILS is common in rapid radiations and can cause genealogical discordance as seen in Malpighiales (Cai et al., 2020) and cichlid fishes (Takahashi et al., 2001). Another explanation is hybridization, as the
distribution of these species also overlaps with members of clade SA6. Hybridization in *Passiflora* within and outside section *Decaloba* has been proved several times under cultivation (Fischer, 2004; Yockteng et al., 2011; Braglia et al., 2014). Future research is needed to evaluate whether these processes have occurred in this clade, as well the possibility that taxonomic changes are necessary. The SA8 clade included five polyphyletic taxa, the highest number found in this study, as well as five polyphyletic species that were placed in different clades. These results could be the product of recent diversification in the Amazon and adjacent lowlands regions, such that few morphological characters may be sufficiently variable to differentiate species. Additional research is also needed in this clade to evaluate this as well as to test whether these patterns may be in part related to incomplete lineage sorting. #### 5. Conclusions The use of herbarium specimens and a 2b-RAD approach succeeded in providing one of the largest and most well-resolved phylogenies of Neotropical vines to date. The phylogeny has uncovered new relationships within *Passiflora* section *Decaloba* that were not known previously, confirmed relationships that were previously proposed, and resolved many important questions that arose through previous morphological and taxonomic studies. However, we also identified several groups (clades SA1-SA4, SA6) that will require more extensive taxon sampling and additional phylogenetic analyses to clarify their phylogeny and biogeography. The results of this study further highlight the need for a modern, comprehensive taxonomic treatment for section *Decaloba*, which will undoubtedly be facilitated by the phylogenetic framework developed in the present study. The phylogeny of Passiflora section Decaloba also allowed us to generate the first hypothesis of the biogeographic history of the group. Our analyses indicate that section Decaloba originated in Central America, then diverged into two major clades (the SA and CA clades). The CA clade subsequently diversified mostly in Central America, with subsequent dispersal events into North America, the Bahamas, and the Lesser and Greater Antilles, with the species in the Greater Antilles likely originating from two (or more) separate dispersal events. The SA clade likely originated from a single colonization of the Andes, apparently prior the formation of the isthmus of Panama, that gave rise to a rapid radiation that likely diversified both in response to the uplift of the Andes as well as to fluctuations in environmental conditions during the Pleistocene, establishing a diversity hotspot in the North Andean mountain forest. The group then progressively colonized the remaining regions of South America, including the Choco, the Galapagos, the Amazon, and the Brazilian Atlantic forest. These results highlight the importance of the Andean region as a biodiversity hotspot that has given rise to a species distributed throughout South America. #### **Funding** Funding was provided by the Whitney R. Harris World Ecology Center, the Missouri Botanical Garden, and the International Association for Plant Taxonomy. Declarations of interest: none. # CRediT authorship contribution statement Serena Acha: Conceptualization, Methodology, Writing - review & editing, Formal analysis, Investigation, Visualization, Funding acquisition. Alexander Linan: Writing - review & editing, Formal analysis, Investigation, Visualization. John MacDougal: Conceptualization, Methodology, Writing - review & editing, Data curation. Christine Edwards: Conceptualization, Methodology, Writing - review & editing, Funding acquisition. #### **Declaration of Competing Interest** The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. # Acknowledgments Thanks to Peter Jørgensen, Nathan Muchhala, Robert Ricklefs and Justin Bagley for comments on previous versions of the manuscript. Most analyses were conducted using the Saint Louis University and University of Missouri high performance computing clusters. We also thank all the institutions (MO, F, US, NY, DUKE, TEX and LPB) and people that provided us with herbarium specimens, permits and samples, especially Shawn Krosnick and John Vanderplank. Finally, we thank Sara Cogburn and James Solomon for curatorial assistance. # Appendix List of samples and collection information. (*) marks samples included in the reduced dataset and $(^1)$ indicates nonpublished names. Cult.: from cultivation source. | Accession | Institution | Collection | | Country | Locality | Name status | SRA accession | |--|-------------|----------------------|------------------|---------------|-------------|------------------------------|-----------------------------| | P. aff. auriculata 332* | MO | Costa | 439 | Brazil | Amazonas | Accepted | SRR13180839 | | P. aff. mexicana 310* | MO | Boyle | 632 | Mexico | Oaxaca | Accepted | SRR13180838 | | P. aff. mexicana 311 | MO | Tajia Yocupicio | MOID:
2238530 | Mexico | Sinaloa | Accepted | SRR13180637 | | P. aff. pohlii 460* | MO | Basualdo | 6410 | Paraguay | Amambay | Accepted | SRR13180762 | | P. aff. micropetala 510*a & b | МО | Grandez | 5801 | Peru | Loreto | Needs re-
circumscription | SRR13180751 | | P. aff. tribolophylla 199* | MO | Fonnegra | 4960 | Colombia | Antioquia | Accepted | SRR13180804 | | P. aff. trifasciata 105* | MO | Schunke | 7642 | Peru | San Martín | Accepted | SRR13180782 | | P. affinis 304* | MO,F,US | Webster | 11193 | Mexico | Nuevo Leon | Accepted | SRR13180739 | | P. affinis 363 | MO,TEX | Lott | 4393 | United States | Texas | Accepted | SRR13180728 | | P. alnifolia 41* | MO | Croat | 96520 | Ecuador | Pichincha | Needs re- | SRR13180837 | | P. alnifolia 424* | MO | Jorgensen | 2475 | Ecuador | Napo | circumscription
Needs re- | SRR13180826 | | | | _ | | | · | circumscription | | | P. alnifolia 820 | МО | Dodson | 10887 | Ecuador | Pichincha | Needs re-
circumscription | SRR13180815 | | P. alnifolia 832 | US | Drew | E-265 | Ecuador | Imbabura | Needs re-
circumscription | SRR13180714 | | P. amalocarpa 604* | MO | MacDougal | 6337 | Cult. | Cult. | Accepted | SRR13180703 | | P. amalocarpa 703 | MO | Silveira | 1185 | Brazil | Acre | Accepted | SRR13180692 | | P. andersonii 630* | DUKE | Webster | 13379 | Dominica | NA | Accepted | SRR13180681 | | P. andreana 049 | MO | Jorgensen | 2476 | Ecuador | Carchi | Needs re-
circumscription | SRR13180670 | | P. andreana 102* | MO | Jorgensen | 2478 | Ecuador | Carchi | Needs re-
circumscription | SRR13180659 | | P. andreana 256 | MO | Jorgensen | 2477 | Ecuador | Carchi | Needs re-
circumscription | SRR13180648 | | P. anfracta 280 | MO | Dodson | 6673 | Ecuador | Los Ríos | Accepted | SRR13180636 | | P. anfracta 286* | MO | Dodson | 14452 | Ecuador | Los Ríos | Accepted | SRR13180625 | | P. apetala 594 | MO | Kay | 194 | Costa Rica | Heredia | Accepted | SRR13180770 | | P. apetala 632 | F,MO | Rodriguez | 1583 | Costa Rica | San José | Accepted | SRR13180769 | | P. apetala 633 | MO | Morales | 2180 | Costa Rica | San José | Accepted | SRR13180768 | | P. apetala 887 | MO | Grayum | 8085 | Costa Rica | Cartago | Accepted | SRR13180767 | | P. apetala 914* | MO | Fernandez | 1472 | Costa Rica | Heredia | Accepted | SRR13180766 | | P. bicornis 141 | MO | Coronado | 4866 | Nicaragua | León | Accepted | SRR13180765 | | P. bicornis 359* | MO | Gonzalez | 385 | El Salvador | La Libertad | Accepted | SRR13180764 | | P. bicornis 695 | NY | Thorne | 7216 | United States | Hawaii | Accepted | SRR13180763 | | P. bicornis 696 | NY | Albert de
Escobar | 3482 | Colombia | Magdalena | Accepted | SRR13180761 | | P. biflora 052 | MO | Avila | 3717 | Guatemala | Izabal | Needs re-
circumscription | SRR13180760 | | P. biflora 244 | MO | Morales | 2997 | Guatemala | Izabal | Needs re- | SRR13180759 | | P. biflora 288 | MO | Pascual | 999 | Mexico | Oaxaca | circumscription
Needs re- | SRR13180758 | | P. biflora 423* | MO | MacDougal | 3458GR | Honduras | Atlantida | circumscription
Needs re- | SRR13180757 | | P. biflora 613 | MO | Kay | 197 | Costa Rica | Heredia | circumscription
Needs re- | SRR13180756 | | P. boenderi 597 | MO | Kay | 196 | Costa Rica | Heredia | circumscription
Accepted | SRR13180755 | | P. bogotensis 435* | MO | Krosnick | 405 | Cult. | Cult. | Accepted | SRR13180754 | | P. bogotensis 439 | MO | Krosnick | 383 | Cult. | Cult. | Accepted | SRR13180753 | | P. bogotensis 441 | MO | Krosnick | 503 | Cult. | Cult. | Accepted | SRR13180752 | | P. bucaramangensis 641* | NY,US | Killip | 17046 | Colombia | Santander | Accepted | SRR13180750 | | P. caduca 885*1 | MO | Vanderplank | 2398/17 | Cult. | Cult. | Accepted | SRR13180749 | | P. calcicola 600; P. calcicola
582* | MO | Kay | 131 | Jamaica | Clarendon | Accepted | SRR13180747;
SRR13180748 | | P. calcicola 610 | MO | Kay | 105 | Jamaica | Trelawny | Accepted | SRR13180746 | | P. cana 558 ¹ | MO | Gentry | 23238 | Peru | Amazonas | Accepted | SRR13180745 | | P. cana 643 ¹ | F | Weigend | 98/374a | Peru | Amazonas | Accepted | SRR13180744 | | P. cana 886* ¹ | MO | Vanderplank | 2449/18 | Cult. | Cult. | Accepted | SRR13180807 | | | -: | | , 10 | ****** | | F | | | | | | | | | | (continued on next p | # (continued) | Accession | Institution | Collection | | Country | Locality | Name status | SRA accession | |--|-------------|---------------|----------|---------------|------------------------|-----------------|---------------| | P. candollei 646* | MO,US | Betancur | 2836 | Colombia | Amazonas | Accepted | SRR13180806 | | P. candollei 782 | MO | Nunez | 14616 | Peru | Madre de Dios | Accepted | SRR13180805 | | . carnosisepala 121* | MO | Matezki | 342 | Ecuador | Zamora- | Accepted |
SRR13180803 | | • | | | | | Chinchipe | • | | | P. cf. cuneata 074* | MO | Ramos | 3588 | Colombia | Valle del Cauca | Accepted | SRR13180802 | | P. cf. cuneata 901* | US | Daniel | 147 | Colombia | Antioquia | Accepted | SRR13180801 | | . ci. cuilcuta 501 | 66 | (Hermano) | 11/ | Golollibia | rintioquiu | riccepted | 514(15100001 | | P. cf. cuspidifolia 872* | MO | Krosnick | 367 | Cult. | Cult. | Accepted | SRR13180800 | | • | | | | | | | | | P. cf. lyra 366 | MO | Clark | 4920 | Ecuador | Esmeraldas | Accepted | SRR13180799 | | P. cf. telesiphe88* | MO | Campos | 6273 | Peru | Cajamarca | Accepted | SRR13180798 | | P. aff. tricuspis 152 | MO | Fuentes | 4395 | Bolivia | La Paz | Accepted | SRR13180793 | | P. chelidonea 811 | MO | Knapp | 6204 | Ecuador | Napo | Needs re- | SRR13180796 | | | | | | | | circumscription | | | P. chelidonea 857* | MO | Ulloa | 2213 | Ecuador | Pichincha | Needs re- | SRR13180794 | | | | | | | | circumscription | | | P. chelidonea 197 | MO | Fonnegra | 5631 | Colombia | Antioquia | Needs re- | SRR13180797 | | | | - | | | - | circumscription | | | . chelidonea 812 | MO | Jorgensen | 61638 | Ecuador | Pichincha | Needs re- | SRR13180795 | | . chendonea 012 | 1110 | borgensen | 01000 | Dedddor | remiena | circumscription | 510(151007)5 | | ahmusasanala 106 | MO | A 1 | 1000 | Faundon | None | • | CDD12100702 | | chrysosepala 106 | MO | Alvarez | 1982 | Ecuador | Napo | Accepted | SRR13180792 | | . chrysosepala 107* | MO | Schwerdtfeger | 95022134 | Ecuador | Sucumbíos | Accepted | SRR13180791 | | . colinvauxii 878* | MO | Krosnick | 539 | Ecuador | Galapagos | Accepted | SRR13180790 | | . coronapapillata 421*1 | MO | Campos | 3901 | Peru | Cajamarca | Accepted | SRR13180789 | | cubensis 585* | MO | Kay | 233 | Cuba | Camaguay | Accepted | SRR13180788 | | 2. cubensis 586 | MO | Kay | 231 | Cuba | Santiago de Cuba | Accepted | SRR13180787 | | 2. cubensis 601 | MO | Kay | 232 | Cuba | Santiago de Cuba | Accepted | SRR13180786 | | 2. cupraea 584* | MO | Kay | 227 | Cuba | Las Tunas | Accepted | SRR13180785 | | . cuspidifolia 122* | MO | Stein | 3686 | Colombia | Cundinamarca | Accepted | SRR13180784 | | . cuspidiiona 122
P. gilbertiana 780* | MO,US | Hammel | 18530 | Costa Rica | San José | • | SRR13180783 | | | | | 3785 | | Jalisco | Accepted | | | P. goniosperma 325* | MO | Lott | | Mexico, | | Accepted | SRR13180781 | | P. helleri 108 | MO | Mendoza | 1382 | Mexico | Puebla | Accepted | SRR13180780 | | P. helleri 143 | MO | Sevilla DJS | 1033 | Mexico | Veracruz | Accepted | SRR13180779 | | P. helleri 509* | MO | Ventura | 19556 | Mexico | Veracruz | Accepted | SRR13180778 | | P. heptantha 328* ¹ | MO | Rojas | 3955 | Peru | Pasco | Accepted | SRR13180777 | | P. hexadenia 565*1 | MO | Vasquez | 28889 | Peru | Pasco | Accepted | SRR13180776 | | P. hirtiflora 714* | MO | Perea | 2982 | Peru | Cajamarca | Accepted | SRR13180743 | | P. hyacinthiflora 285* | MO | Hernandez | 195 | Colombia | Santander | Accepted | SRR13180742 | | P. ichthyura 099* | MO | Nee | 36203 | Bolivia | Santa Cruz | Accepted | SRR13180741 | | P. ilamo 407a & b ¹ | MO | MacDougal | 6201 | Guatemala | Solola | • | SRR13180740; | | · Hamo 40/a & b | WO | MacDougai | 0201 | Guatemaia | 30101a | Accepted | - | | 400*1 | *** | W D 1 | 6000 | 0 1 | 0.1.1 | 1 | SRR13180738 | | P. ilamo 409*1 | MO | MacDougal | 6203 | Guatemala | Solola | Accepted | SRR13180737 | | P. indecora 282* | MO | Lewis | 2413 | Ecuador | Loja | Accepted | SRR13180736 | | P. indecora 562 | MO | Jorgensen | 1136 | Ecuador | Loja | Accepted | SRR13180735 | | P. insolitii 415a*; P. insolitii | MO | MacDougal | 6213 | Guatemala | Baja Verapaz | Accepted | SRR13180734; | | 415b | | | | | | | SRR13180733 | | P. insolitii 839* ¹ | MO | Vanderplank | sn | Mexico | Chiapas | Accepted | SRR13180732 | | P. jeannettae 469 ¹ | MO | Giraldo Canas | 593 | Colombia | Antioquia | Accepted | SRR13180731 | | P. jeannettae 720*1 | MO | MacDougal | 4160 | Colombia | Antioquia | Accepted | SRR13180730 | | P. jorullensis var. salvadorensis | MO | Sandoval | 112 | El Salvador | Ahuachapán | Needs re- | SRR13180727 | | 660 | | Juniovan | 114 | III ourvactor | ¹ maacnapan | circumscription | 510(15100/2/ | | P. jorullensis var. salvadorensis | MO | Fidel Long- | MOID: | El Salvador | Ahusahané- | - | CDD10100706 | | 3 | MO | Fidel Lopez | | EI SHIVAGOR | Ahuachapán | Needs re- | SRR13180726 | | 661 | *** | m 1 1 | 2243361 | T101 | 41 1 / | circumscription | app10100=0= | | P. jorullensis var. salvadorensis | MO | Toledo | 1 | El Salvador | Ahuachapán | Needs re- | SRR13180725 | | 663 | | | | | | circumscription | | | P. jorullensis var. salvadorensis | MO | Breedlove | 27627 | Mexico | Chiapas | Needs re- | SRR13180724 | | 891* | | | | | | circumscription | | | P. jorullensis var. jorullensis | MO | Vazquez | 1227 | Mexico | Jalisco | Needs re- | SRR13180729 | | 781 | | - | | | | circumscription | | | P. kalbreyeri 283 | MO | Davidse | 21150 | Venezuela | Lara | Accepted | SRR13180723 | | P. kalbreyeri 553 | MO | Porter-Utley | 415 | Cult. | Cult. | Accepted | SRR13180722 | | - | | • | | | | | | | P. kalbreyeri 846* | NY,US | Weitzman | 112 | Venezuela | Aragua | Accepted | SRR13180721 | | P. ketura 330*1 | MO,US | Woytkowski | 7804 | Peru | Amazonas | Accepted | SRR13180720 | | P. ketura 710 ¹ | MO | de Cevasco | MOID: | Peru | Amazonas | Accepted | SRR13180719 | | | | | 2877363 | | | | | | P. lancearia 114* | MO | MacDougal | 6276 | Panama | Colón | Accepted | SRR13180718 | | P. lancearia 115 | MO | MacDougal | 6268 | Panama | Coclé | Accepted | SRR13180836 | | P. lancearia 251 | MO | MacDougal | 6263 | Panama | Coclé | Accepted | SRR13180835 | | P. lancearia 399 | MO | Morales | 4078 | Costa Rica | Heredia | Accepted | SRR13180834 | | | | Krosnick | | | Cult. | - | | | P. leptoclada 442* | MO | | 491 | Cult. | | Accepted | SRR13180833 | | P. leptoclada 665* | F,US | Williams | 5252 | Peru | Loreto | Accepted | SRR13180832 | | P. leptoclada 666 | US | Williams | 2737 | Peru | Loreto | Accepted | SRR13180831 | | P. lutea 319* | MO | Thomas | 150563 | United States | Mississippi | Accepted | SRR13180830 | | P. lutea 320 | MO | Stone | 1532 | United States | North Carolina | Accepted | SRR13180829 | | P. lutea 322 | MO | Christy | MOID: | United States | Arkansas | Accepted | SRR13180828 | | | | - | | | | * | | | | | | 34151736 | | | | | # (continued) | P. mollis 788* TEX Escobar 420 Colombia Caldas Needs re- | SRA accession | Name status | Locality | Country | | Collection | Institution | Accession | |--|-----------------------------|------------------------------|-------------------|-------------|--------|-------------|-------------|---------------------------------------| | micrametha 683* NY 690ebrg 2018 Colombia Candinamerae Accepted micropethal 512* MO Bass 377 Ecuador Napon Accepted micropethal 512* MO Jaramillo 1335 Peru Amazonas Accepted micropethal 512* MO MacDougal 4982 Ecuador Napon Accepted micropethal 512* MO MacDougal 6281 Panama Canal Area Accepted miscra 170° MO MacDougal 6281 Panama Canal Area Accepted miscra 170° MO MacDougal 6281 Panama Canal Area Accepted miscra 170° MO Accepted 180° 181° 181° 181° 181° 181° 181° 181° | SRR13180825 | Accepted | Tolima | Colombia | 2568 | Uribe | NY,US | magdalenae 669* | | micropetals 385 | SRR13180824 | - | | Colombia | 22018 | | | • | | micropetala 512" MO MacDosgal 4982 Ecuador Napo Accepted misera 970 MO MacDosgal 4982 Ecuador Napo Accepted misera 970 MO MacDosgal 4982 Ecuador Napo Accepted misera 970 MO Mo MacDosgal 4982 Ecuador Napo Accepted misera 551 MO Zardini 60751 Paragusy Camindeyú Accepted misera 551 MO Zardini 31610 Paragusy Camindeyú Accepted misera 503 MO Zardini 31610 Paragusy Caminal Accepted misera 503 MO Zardini 34670 Paragusy Caminal Accepted misera 503 MO Zardini 34670 Paragusy Caminal Accepted misera 504 MO Gentry 48093 Columbia Cadas Accepted misera 505 MO Gentry 48093 Columbia Cadas
Accepted misera 505 MO Gentry 48093 Columbia Cadas Accepted misera 506 MO Kay 217 Dominican Baoruco Accepted error e | SRR13180823 | • | | | | | | | | micropotal 721 MO MacDougal 4982 Ecuador Napo Accepted misers a 135 MO Zardini 60751 Paraguay Canindeyú Accepted misers a 135 MO Zardini 60751 Paraguay Canindeyú Accepted misers a 135 MO Zardini 36070 Paraguay Cantral Accepted misers 501 MO Zardini 34070 Paraguay Central Accepted misers 504 507 | SRR13180822 | • | • | | | | | • | | misera 070 MO MacDougal 6281 Panama Canal Area Accepted misera 257 MO Beck 3292A Bolivia Beni Accepted misera 257 MO Beck 3292A Bolivia Beni Accepted misera 557 MO Beck 3292A Bolivia Beni Accepted misera 503 MO Zardini 31610 Paraguay Central Accepted misera 503 MO Zardini 36010 Paraguay Central Accepted misera 504 central formation and paraguay accepted misera 503 MO Zardini 3600 Paraguay Central Accepted elicitate formation and paraguay accepted misera 503 MO Zardini 3600 Paraguay Central Accepted central formation and paraguay accepted misera 503 Paraguay Central Accepted paraguay accepted misera 503 Paraguay Central Accepted paraguay accepted misera 504 Paraguay Central Accepted paraguay accepted misera 504 Paraguay Central Accepted paraguay accepted misera 504 Paraguay Central Central 504 Paraguay Central Accepted Misera 504 Paraguay Central Accepted Misera 504 Paraguay Central Accepted Misera 504 Paraguay Central Accepted Paraguay Central Accepted Paraguay Central Accepted Paraguay Central Accepted Paraguay Central 504 Paragua | | - | | | | | | - | | misers 135 MO Zardini | SRR13180821 | • | - | | | · · | | = | | misers 257 MO Beck 3292A Bolivia Reni Accepted misers 503 MO Zardini 31610 Paraguay Central Accepted misers 503 MO Zardini 31610 Paraguay Central Accepted misers 504 MO Gentry 48035 Colombia Valle del Cauca Needs reminers 504 MO Gentry 48035 Colombia Valle del Cauca Needs reminers 504 MO Gentry 48035 Colombia Valle del Cauca Needs reminers 504 MO Gentry TEX Escobar 420 Colombia Valle del Cauca Needs reminers 504 MO Res remin | SRR13180820 | • | | Panama | | U | | | | misers 501 MO Zardini 31610 Paraguay Central A-ccepted misers 504° MO Zardini 3601° Paraguay Central A-ccepted Molis 5788° TEX Escobar 420° Colombia Caldas Needs recursor-gription of the public misers 504° MO Zardini Molis 5788° Dominican Distrito Nacional A-ccepted Memorita 502° MO Zardini Molis 5788° Paraguay Central A-ccepted Memorita 578° MO Zardini Molis 5788° Paraguay Central A-ccepted Memorita 578° MO Zardini Molis 5788° Paraguay Central A-ccepted Memorita 578° MO Zardini Molis 578° Paraguay Central A-ccepted Memorita 578° MO Zardini Molis 579° Molis 578° MO Zardini Molis 578° MO Zardini Molis 579° Molis 578° MO Zardini Molis 579° 579 | SRR13180819 | Accepted | Canindeyú | Paraguay | 60751 | Zardini | MO | misera 135 | | misers 503 | SRR13180818 | Accepted | Beni | Bolivia | 3292A | Beck | MO | misera 257 | | misers 503 MO Zardini 34670 Pangsay Central Accepted mollis 455° MO Gentry 48035 Colombia Valle del Cauca (Needs removed) (Nee | SRR13180817 | Accepted | Central | Paraguay | 31610 | Zardini | MO | misera 501 | | misers 504° MO Genty 48035 Colombia Valle del Cauca Needs re- monilis 455° MO Genty 48035 Colombia Valle del Cauca Needs re- monilis 788° TEX Escobar 420 Colombia Caldas Needs re- murucuja 592 MO Kay 217 Dominican Baoruco Accepted MO Kay 217 Dominican Baoruco Accepted MO Kay 211 Dominican Baoruco Accepted MO Kay 210 Dominican Baoruco Accepted MO Kay 211 Dominican Baoruco Accepted MO Kay 212 Dominican Baoruco 107 MO MACDugal MO Taylor MO Taylor MO MO Taylor Taylor M | SRR13180816 | - | | | | | | | | mollis 455° MO Gentry 48035 Colombia Valle del Cauca investigation of the colombia colo | SRR13180814 | | | | | | | | | murucuja 592 MO Kay 217 Dominican Republic controlled in the control of contr | | - | | | | | | | | | SRR13180813 | circumscription | | | | , | | | | Mo | SRR13180812 | Needs re-
circumscription | Caldas | Colombia | 420 | Escobar | TEX | mollis 788* | | Martecuja 617° MO | SRR13180811 | Accepted | Distrito Nacional | | 217 | Kay | MO | murucuja 592 | | murucuja 618 MO Kay 206 Dominican Republic Republic Republic Dominican Republic Republic Dominican Republic Possor Republic Republi | SRR13180810 | Accepted | Baoruco | Dominican | 211 | Kay | MO | murucuja 617* | | murucuja 619 | SRR13180809 | Accepted | Independencia | Dominican | 206 | Kay | MO | murucuja 618 | | nana 716* MO Campos 2921 Peru Cajamarca Accepted nubicola 674* DUKE MacDougal 1244 Costa Rica Catago Accepted nubicola 676 TEX Knapp 857 Costa Rica Alajuela Accepted oblongata 587* MO Kay 107 Jamaica Trelawny Accepted occidentalis 361* MO Kay 183 Jamaica Trelawny Accepted occidentalis 470*** MO MolUS MacDougal 6303 Panama Coclé Accepted occidentalis 472a** b** MO Onore MOID: Ecuador Ecuador Ecuador Escepted orbiculata 616* MO Kay 214 Dominican Independencia Accepted panamensis 698* DUKE MacDougal 444 Panama Darién Accepted panamensis 698* DUKE MacDougal 444 Panama Darién Accepted panam | SRR13180808 | Accepted | Independencia | • | 212 | Kay | MO | murucuja 619 | | nubicola 674° DUKE MacDougal 1244 Costa Rica Carrago Accepted oblongata 587 MO Kay 107 Jamaica Trelawny Accepted oblongata 587 MO Kay 183 Jamaica Trelawny Accepted oblongata 511° MO Kay 183 Jamaica Trelawny Accepted oblongata 511° MO Kay 183 Jamaica Trelawny Accepted oblongata 511° MO MacDougal 6302 Panama Cocide Accepted occidentalis 3261¹ MO,US MacDougal 6302 Panama Cocide Accepted occidentalis 3470°¹ MO Taylor 12192 Colombia Valle del Cauca Accepted occidentalis 470°¹ MO Taylor 12192 Colombia Valle del Cauca Accepted occidentalis 472°¹ MO Nore MOID: Euador Esmeraldas Accepted panamensis 698° DUKE MacDougal 444 Panama Darién Accepted panamensis 787 MO Zarucchi 5107 Colombia Antioquia Accepted panamensis 787 MO Zarucchi 5107 Colombia Antioquia Accepted paradicila 443°; P. pardifolia MO Vanderplank MOID: NA NA NA Accepted panamensis 1912 MO Vanderplank MOID: NA NA NA Accepted panacoensis 189° MO Rodriguez 95 Peru Pasco Accepted penduliflora 580° MO Kay 102 Jamaica Trelawny Accepted penduliflora 580° MO Kay 102 Jamaica Trelawny Accepted penduliflora 589 MO Kay 104 Jamaica Trelawny Accepted penduliflora 589 MO Kay 104 Jamaica Trelawny Accepted penduliflora 599 MO Kay 104 Jamaica Claredon Accepted punctata 056° MO MO Rodriguez 291 Colombia Antioquia Accepted punctata 056° MO Jorgensen 2458 Ecuador Azuay Accepted punctata 056° MO Jorgensen 2458 Ecuador Azuay Accepted punctata 057 MO Jorgensen 2458 Ecuador Azuay Accepted punctata 057 MO Meigend 98/184 Peru Piura Accepted punctata 057 MO Meigend 6336 Peru Piura Accepted Sandra 127° Sandra Mo Mo Rodriguez 1285 Caribbean, Guadeloupe Accepted sandra 127° MO Meigend 98/184 Peru Piura Accepted Sandra 127° MO Meigend 98/184 Peru Piura Accepted Sandra 127° Sandra 144° MO No Naclougal 6290 Panama Cocie Accepted Sandra 127° MO Meigend 148° Peru Piura Accepted Sandra 127° MO Meigend 148° Peru Piura A | SRR13180717 | Accepted | Cajamarca | - | 2921 | Campos | MO | nana 716* | | nubicola 676 TEX Knapp 857 Costa Rica Alajuela Accepted oblongata 587 MO Kay 107 Jamaica Trelawny Accepted oblongata 587 MO Kay 107 Jamaica Trelawny Accepted occidentalis 2611 MO MacDougal 6303 Panama Coclé Accepted occidentalis 3701 MO Mo Cocidentalis 47021 MO Tonavorable Accepted occidentalis 47021 MO Tonavorable Accepted occidentalis 47021 MO Tonavorable MO Ecuador Ecuador Esmedias Accepted occidentalis 47021 MO Mo Kay 214 Dominican Independencia Accepted occidentalis 47021 Mo Kay 214 Dominican Independencia Accepted occidentalis 47221 Mo Mo MacDougal 444 Panama Daricin Accepted orbiculata 616** MO MacDougal 444 Panama Daricin Accepted panamensis 698** DUKE MacDougal 444 Panama Daricin Accepted panamensis 6910**< | SRR13180716 | • | | | | * | | | | oblongata 587 MO Kay 107 Jamaica Trelawny Accepted occidentalis 2611 MO Kay 183 Janaica Trelawny Accepted occidentalis 2611 MO MacDougal 6302 Panama Coclé Accepted occidentalis 4721* MO Taylor 12192 Colombia Valle del Cauca Accepted occidentalis 4722** & b¹ MO Onore MOID: Eucador Esmeraldas Accepted orbiculata 616* MO Kay 214 Dominican Independencia Accepted panamensis 698* DUK MacDougal 444 Panama Darien Accepted panamensis 787 MO Zarucchi 5107 Colombia Antiqua Accepted panamensis 912 MO,US Foster 2837 Panama Darién Accepted pascensis 189* MO Rodriguez 95 Penu Pasco Accepted pascensis 190 MO Rodriguez | | - | - | | | | | | | oblongata 611* MO Kay 183 Jamaica Trelawmy Accepted occidentalis 261¹ MO MacDougal 6302 Panama Coclé Accepted occidentalis 470⁴¹ MO Taylor 12192 Colombia Valle del Cauca Accepted orbiculata 616* MO Ro Valle del Cauca Accepted orbiculata 616* MO Kay 214 Dominican Independencia Accepted panamensis 698* DUKE MacDougal 444 Panama Darién Accepted panamensis 787 MO Zarucchi 5107 Colombia Antioquia Accepted panamensis 912 MO,US Foster 2837 Panama Darién Accepted panamensis 919 MO Vanderplank MOID: NA NA Accepted paramiciolia 443**, P. pardifolia MO Rodriguez 95 Peru Pasco Accepted pascoensis 189° MO Rodriguez 42 | SRR13180715 | • | | | | | | | | occidentalis 261 ¹ MO MacDougal of 303 Panama cocié Accepted occidentalis 370 ⁻¹ Accepted occidentalis 470 ⁻¹ Accepted occidentalis 470 ⁻¹ MO Taylor 12192 Colombia Valle del Cauca Accepted occidentalis 472a ⁺ & b ⁻¹ MO Taylor 12192 Colombia Valle del Cauca Accepted occidentalis 472a ⁺ & b ⁻¹ MO Taylor 12192 Colombia Valle del Cauca Accepted estandialis orbiculata 616* MO Ray 214 Dominican Independencia Accepted panamensis 698* DUKE MacDougal 444 Panama Darién Accepted panamensis 787 MO Zarucchi 5107 Colombia Antioquia Accepted paradifolia 435*; P. pardifolia MO Vanderplank MOID: NA NA Accepted passoensis 189* MO Rodriguez 95 Peru Pasco Accepted passoensis 189* MO Kodriguez 95 Peru Pasco Accepted penduliflora 580° MO< | SRR13180713 | • | • | | | - | | • | | occidentalis 370 ⁻¹ MO, US MacDougal Mo Taylor 12192 Colombia Colombia Coclée Accepted occidentalis 470 ⁻¹ MO Taylor 12192 Colombia
Valle del Cauca Accepted coccidentalis 470 ⁻¹ MO Taylor 12192 Colombia Valle del Cauca Accepted coccidentalis 470 ⁻¹ Mo Republic Estandor Estandor Estandor Estandor Accepted Republic panamensis 698* DUKE MacDougal 444 Panama Darién Accepted Paradifolia Accepted Accepted Paradifolia Accepted MoUS Foster 2837 Panama Darién Accepted Paradifolia 443*; P. pardifolia MO Vanderplank MOID: NA NA NA Accepted Accepted Paradifolia 443*; P. pardifolia NO Rodriguez 95 Peru Pasco Accepted Pascoensis 189* MO Rodriguez 95 Peru Pasco Accepted Pascoensis 190 MO Rodriguez 42 Peru Pasco Accepted Pascoensis 190 MO Kay 230 Cuba Santiago de Cuba Accepted Pascoensis 190 MO <td>SRR13180712</td> <td>Accepted</td> <td>Trelawny</td> <td>Jamaica</td> <td>183</td> <td>Kay</td> <td>MO</td> <td></td> | SRR13180712 | Accepted | Trelawny | Jamaica | 183 | Kay | MO | | | occidentalis 370 ⁻¹ MO, US MacDougal Mo Taylor 12192 Colombia Colombia Coclée Accepted occidentalis 470 ⁻¹ MO Taylor 12192 Colombia Valle del Cauca Accepted coccidentalis 470 ⁻¹ MO Taylor 12192 Colombia Valle del Cauca Accepted coccidentalis 470 ⁻¹ Mo Republic Estandor Estandor Estandor Estandor Accepted Republic panamensis 698* DUKE MacDougal 444 Panama Darién Accepted Paradifolia Accepted Accepted Paradifolia Accepted MoUS Foster 2837 Panama Darién Accepted Paradifolia 443*; P. pardifolia MO Vanderplank MOID: NA NA NA Accepted Accepted Paradifolia 443*; P. pardifolia NO Rodriguez 95 Peru Pasco Accepted Pascoensis 189* MO Rodriguez 95 Peru Pasco Accepted Pascoensis 190 MO Rodriguez 42 Peru Pasco Accepted Pascoensis 190 MO Kay 230 Cuba Santiago de Cuba Accepted Pascoensis 190 MO <td>SRR13180711</td> <td>Accepted</td> <td>Coclé</td> <td>Panama</td> <td>6303</td> <td>MacDougal</td> <td>MO</td> <td>occidentalis 261¹</td> | SRR13180711 | Accepted | Coclé | Panama | 6303 | MacDougal | MO | occidentalis 261 ¹ | | occidentalis 470-1 MO Taylor 12192 Colombia Valle del Cauca Accepted occidentalis 472a* & b 1 MO Onore MOID: Ecuador Esmeraldas Accepted occidentalis 472a* & b 1 MO Onore MOID: Ecuador Esmeraldas Accepted 100987836 orbiculata 616* MO Kay 214 Dominican Independencia Accepted 100987836 orbiculata 616* MO Kay 214 Dominican Independencia Accepted Panamensis 698* DUKE MacDougal 444 Panama Darién Accepted Panamensis 787 MO Zarucchi 5107 Colombia Antioquia Accepted Panamensis 787 MO Zarucchi 5107 Colombia Antioquia Accepted Panamensis 912 MO,US Poster 2837 Panama Darién Accepted Panamensis 912 MO,US Poster 2837 Panama Darién Accepted Panadiolia 443*; P. pardifolia 479. Pardifolia 479 Panamia MOID: NA NA Accepted Passcoensis 189* MO Rodriguez 95 Peru Pasco Accepted Panascoensis 190 MO Rodriguez 42 Peru Pasco Accepted Penduliflora 580* MO Kay 102 Jamaica Trelawny Accepted Penduliflora 580* MO Kay 104 Jamaica Trelawny Accepted Penduliflora 589 MO Kay 104 Jamaica Trelawny Accepted Penduliflora 595 MO Kay 174 Jamaica Claredon Accepted Penduliflora 596 MO Boza 2139 Peru Loreto Accepted Pendunitata 056* MO Boza 2139 Peru Loreto Accepted Punctata 056* MO Boza 2139 Peru Loreto Accepted Punctata 056* MO Jorgensen 2458 Ecuador Azuay Accepted Quadriflora 369* MO Galiano 6424 Peru Queco Accepted Quadriflora 369* MO Galiano 6424 Peru Queco Accepted Quadriflora 369* MO Galiano 6424 Peru Cueco Accepted Quadriflora 369* MO Galiano 6424 Peru Cueco Accepted Quadriflora 369* MO Galiano 6424 Peru Cueco Accepted Quadriflora 369* MO MacDougal 6336 Brazil Cult. Accepted Sanicla 603* MO MacDougal 6336 Brazil Cult. Accepted Sanicla 604* MO Kay 108 Revero NoiDia Accepted Sanicla 604* MO Valenzuela 13876 Peru San Martin Accepted S | SRR13180710 | | | | | | | | | MO | SRR13180709 | - | | | | - | | | | Dominican | | • | | | | • | | _ | | Derbiculata 616° MO | SRR13180708; | Accepted | Esmeraidas | Ecuador | | Onore | MO | occidentalis 4/2a* & b* | | panamensis 698* DUKE MacDougal 444 Panama Darién Accepted panamensis 787 MO Zarucchi 5107 Colombia Antioquia Accepted panamensis 787 MO Zarucchi 5107 Colombia Antioquia Accepted panamensis 912 MO,US Foster 2837 Panama Darién Accepted 2837 Panama Darién Accepted panamensis 912 MO,US Foster 2837 Panama Darién Accepted 226 Saradifolia 443*; P. pardifolia MO Vanderplank MOID: NA NA NA Accepted 226 Peru Pasco Accepted pascoensis 189* MO Rodriguez 95 Peru Pasco Accepted penduliflora 580* MO Rodriguez 42 Peru Pasco Accepted penduliflora 580* MO Kay 102 Jamaica Trelawny Accepted penduliflora 580 MO Kay 230 Cuba Santiago de Cuba Accepted penduliflora 595 MO Kay 104 Jamaica Trelawny Accepted penduliflora 595 MO Kay 104 Jamaica Trelawny Accepted penduliflora 595 MO Kay 174 Jamaica Claredon Accepted penduliflora 595 MO Kay 174 Jamaica Claredon Accepted penduliflora 595 MO Kay 174 Jamaica Claredon Accepted penduliflora 595 MO Boza 2139 Peru Loreto Accepted penduciata 056* MO Boza 2139 Peru Loreto Accepted punctata 056* MO Jorgensen 2458 Ecuador Azuay Accepted punctata 192* MO Weigend 98/184 Peru Piura Accepted punctata 192* MO Weigend 98/184 Peru Piura Accepted rotundifolia 700* US Stehle 1513 Guadeloupe NA Accepted rotundifolia 700* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 700* NM MacDougal 6336 Brazil Cult. Accepted seaflora 324* MO MAcDougal 6336 Brazil Cult. Accepted seaflora 324* MO NY, US Axelrod 6137 Puerto Rico Barraquitias Accepted Seaflora 324* MO NY, US Axelrod 6137 Puerto Rico Barraquitias Accepted Seaflora 324* MO NY, US Axelrod 6137 Puerto Rico Barraquitias Accepted Seaflora 324* MO NY, US Axelrod 6137 Puerto Rico Barraquitias Accepted Seaflora 324* MO NY, US Axelrod 6137 Puerto Rico Barraquitias Accepted Seaflora 324* MO NY, US Axelrod 6137 Puerto Rico Barraquitias Accepted Seaflora 324* MO NY, US Axelrod 6137 Puerto Rico Barraquitias Accepted Seaflora 324* MO NY, US Axelrod 6137 Puerto Rico Barraquitias Accepted Seaflora 324* MO NY, US Axelrod 6137 Puerto Rico Barraquitias Accepted Seaflora | SRR13180707 | | | | | | | | | panamensis 698° DUKE MacDougal 444 Panama Darién Accepted panamensis 787 MO Zarucchi 5107 Colombia Antioquia Accepted panamensis 787 MO Vanderplank MOID: NA NA Accepted pardifolia 443°; P. pardifolia 43°; 44°* 44° | SRR13180706 | Accepted | Independencia | | 214 | Kay | MO | orbiculata 616* | | panamensis 787 MO Zaruchi 5107 Colombia Antioquia Accepted panamensis 912 MO,US Foster 2837 Panama Darién Accepted paradifolia 443°; P. pardifolia MO Vanderplank MOID: NA NA NA Accepted paradifolia 443°; P. pardifolia 26 3330227 Sascoensis 189° MO Rodriguez 95 Peru Pasco Accepted pascoensis 189° MO Rodriguez 42 Peru Pasco Accepted penduliflora 580° MO Kay 102 Jamaica Trelawny Accepted penduliflora 589 MO Kay 230 Cuba Santiago de Cuba Accepted penduliflora 595 MO Kay 104 Jamaica Trelawny Accepted penduliflora 595 MO Kay 104 Jamaica Trelawny Accepted penduliflora 599 MO Kay 174 Jamaica Claredon Accepted penduliflora 599 MO Kay 174 Jamaica Claredon Accepted poliosissima 044° MO Hernandez 291 Colombia Antioquia Accepted poliosissima 045° MO Boza 2139 Peru Loreto Accepted ponential 056° MO Boza 2139 Peru Loreto Accepted punctata 056° MO Jorgensen 2458 Ecuador Azuay Accepted punctata 056° MO Jorgensen 2458 Ecuador El Oro Accepted quadriflora 369° MO Weigend 98/184 Peru Piura Accepted quadriflora 369° MO Galiano 6424 Peru Piura Accepted punctatifolia 701° US Stehle 1513 Guadeloupe NA Accepted rotundifolia 701° NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 701° NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 1513 Guadeloupe NA Accepted sandrae 127° MO MacDougal 6290 Panama Cocle Accepted sendrae 127° MO MacDougal 6336 Brazil Cult. sendre 128° MO MacDougal 6336 Brazil Cult. Accepted sendre 128° MO MacDougal 6336 Brazil Cult. Accepted Sendre 128° MO Mo MacD | SRR13180705 | Accepted | Darién | • | 444 | MacDougal | DUKE | panamensis 698* | | panamensis 912 MO,US Foster 2837 Panama Darien Accepted pardifolia 443°; P. pardifolia 430°; 440°; | SRR13180704 | • | | | | | | | | Name | | • | • | | | | | • | | 3330227 | SRR13180702 | • | | | | | | | | pascoensis 189° MO Rodriguez 95 Peru Pasco Accepted pascoensis 190 MO Rodriguez 42 Peru Pasco Accepted pascoensis 190 MO Rodriguez 42 Peru Pasco Accepted penduliflora 580° MO Kay 102 Jamaíca Trelawny Accepted penduliflora 589 MO Kay 104 Jamaíca Trelawny Accepted penduliflora 589 MO Kay 104 Jamaíca Trelawny Accepted penduliflora 595 MO Kay 174 Jamaíca Claredon Accepted penduliflora 595 MO Kay 174 Jamaíca Claredon Accepted penduliflora 599 MO Kay 174 Jamaíca Claredon Accepted poliosissima 044° MO Hernandez 291 Colombia Antioquia Accepted punctata 056° MO Boza 2139 Peru Loreto Accepted punctata 056° MO Jorgensen 2458 Ecuador Azuay Accepted punctata 056° MO Jorgensen 2458 Ecuador Azuay Accepted punctata 192° MO Weigend 98/184 Peru Piura Accepted quadriflora 369° MO Galiano 6424 Peru Piura Accepted rotundifolia 700° US Stehle 1513 Guadeloupe NA Accepted rotundifolia 700° US Stehle 1513 Guadeloupe NA Accepted rotundifolia 700° NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted searchora 323° MO MacDougal 6336 Brazil Cult. Accepted searchora 323° MO MacDougal 6336 Brazil Cult. Accepted searchora 324 MO, NY, US Axelrod 6137 Puerto Rico Patillas Accepted searchora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted searchora 324 MO Nacrougal 636 Brazil Cult. Accepted searchora 324 MO Nacrougal 637 Puerto Rico Barranquitas Accepted searchora 324 MO Nacrougal 6386 Brazil Cult. Accepted searchora 324 MO Nacrougal 6386 Brazil Cult. Accepted searchora 324 MO Nacrougal 6386 Brazil Cult. Cult. Accepted searchora 324 MO Nacrougal 6386 Brazil Cult. Cult. Accepted searchora 324 MO Nacrougal 6386 Brazil Cult. Cult. Accepted searchora 324 MO Nacrougal 6386 Brazil Cult. Cult. Accepted searchora 324 MO Nacrougal 6386 Brazil Cult. Cult. Accepted searchora 324 MO Nacrougal 6386 Brazil Cult. Cult. Accepted searchora 324 MO Nacrougal 6386 Brazil Cult. Cult. Accepted searchora 3286 MO Searchora 3286 Peru Pasco Accepted Searchora 3286
MO Searchora 3286 Peru Pasco Accepted S | SRR13180700;
SRR13180701 | Accepted | NA | NA | | Vanderplank | MO | = | | pascoensis 190 MO Rodriguez 42 Peru Pasco Accepted penduliflora 580* MO Kay 102 Jamaica Trelawny Accepted penduliflora 589 MO Kay 230 Cuba Santiago de Cuba Accepted penduliflora 589 MO Kay 104 Jamaica Trelawny Accepted penduliflora 595 MO Kay 104 Jamaica Trelawny Accepted penduliflora 595 MO Kay 174 Jamaica Claredon Accepted penduliflora 599 MO Kay 174 Jamaica Claredon Accepted penduliflora 599 MO Kay 174 Jamaica Claredon Accepted poeppigii 266* MO Boza 2139 Peru Loreto Accepted punctata 056* MO Jorgensen 2458 Ecuador Azuay Accepted punctata 056* MO Jorgensen 2458 Ecuador Azuay Accepted punctata 057 MO Jorgensen 2458 Ecuador El Oro Accepted punctata 057 MO Weigend 98/184 Peru Piura Accepted quadriflora 369* MO Galiano 6424 Peru Cusco Accepted rotundifolia 701* NY Stehle 1513 Guadeloupe NA Accepted rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127* MO MacDougal 6336 Brazil Cult. Accepted saxicola 603* MO MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted sexflora 324 MO Vanderplank sn Cult. Cult. Accepted sp. nov. 388* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 388* MO Valenzuela 13876 Peru San Martin Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted standleyi 273 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 MO Renderos 410 El Salvador Ahuachapán Accepted standleyi 273 MO Renderos 410 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador Li Libertad Accepted standleyi 432 MO Davidse 35029 Honduras El Paraiso Accepted standleyi 432 | SRR13180699 | Accepted | Pasco | Peru | | Rodriguez | MO | | | penduliflora 580° MO Kay 102 Jamaica Trelawny Accepted penduliflora 589 MO Kay 230 Cuba Santiago de Cuba Accepted penduliflora 595 MO Kay 104 Jamaica Trelawny Accepted penduliflora 599 MO Kay 174 Jamaica Claredon Accepted penduliflora 599 MO Kay 174 Jamaica Claredon Accepted penduliflora 599 MO Hernandez 291 Colombia Antioquia Accepted penduliflora 566° MO Boza 2139 Peru Loreto Accepted punctata 056° MO Jorgensen 2458 Ecuador Azuay Accepted punctata 056° MO Jorgensen 2458 Ecuador Azuay Accepted punctata 057 MO Jorgensen 2457 Ecuador El Oro Accepted quadriflora 369° MO Weigend 98/184 Peru Piura Accepted quadriflora 369° MO Galiano 6424 Peru Cusco Accepted rottundifolia 701° NY Stehle 1513 Guadeloupe NA Accepted rottundifolia 701° NY Stehle 1513 Guadeloupe NA Accepted rottundifolia 701° NY Stehle 123 Caribbean, Guadeloupe Accepted rottundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted saxicala 603° MO MacDougal 6290 Panama Coclé Accepted sexflora 323° MO MacDougal 6336 Brazil Cult. Accepted sexflora 323° MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted sexflora 464 MO Krosnick 500 Ecuador Napo Accepted Sp. nov. 270 MO Raurau 91 Peru Cusco Accepted Sp. nov. 270 MO Raurau 91 Peru Cusco Accepted Sp. nov. 388° MO Valenzuela 13876 Peru Pasco Accepted Sp. nov. 404° MO Ferreyra 7783 Peru San Martin Accepted Sp. nov. 404° MO Ferreyra 7783 Peru San Martin Accepted Sp. nov. 404° MO Ferreyra 7783 Peru San Martin Accepted Standleyi 273 MO Breedlove 37173 Mexico Chiapas Accepted Standleyi 273 MO Renderos 410 El Salvador La Libertad Accepted Standleyi 432 MO Davidse 35029 Honduros El Paraiso Accepted Standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 | | • | | | | - | | • | | penduliflora 589 MO Kay 230 Cuba Santiago de Cuba Accepted penduliflora 595 MO Kay 104 Jamaica Trelawny Accepted penduliflora 599 MO Kay 104 Jamaica Claredon Accepted penduliflora 599 MO Kay 174 Jamaica Claredon Accepted pilosissima 044* MO Hernandez 291 Colombia Antioquia Accepted pilosissima 044* MO Boza 2139 Peru Loreto Accepted punctata 056* MO Boza 2139 Peru Loreto Accepted punctata 056* MO Jorgensen 2458 Ecuador Azuay Accepted punctata 057 MO Jorgensen 2457 Ecuador El Oro Accepted punctata 192* MO Weigend 98/184 Peru Piura Accepted quadriflora 369* MO Galiano 6424 Peru Cusco Accepted rotundifolia 700* US Stehle 1513 Guadeloupe NA Accepted rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127* MO MacDougal 6336 Brazil Cult. Accepted saxicola 603* MO MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO MacDougal 6336 Brazil Cult. Accepted sexflora 3234 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted Smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru San Martin Accepted sp. nov. 270 MO Raurau 91 Peru San Martin Accepted sp. nov. 270 MO Raurau 91 Peru San Martin Accepted sp. nov. 270 MO Raurau 91 Peru San Martin Accepted sp. nov. 388* MO Valenzuela 13876 Peru San Martin Accepted sp. nov. 388* MO Recepted 404* MO Recepted Sp. nov. 388* MO Recepted Sp. nov. 404* MO Recepted Sp. no | SRR13180698 | • | | | | · | | - | | penduliflora 595 MO Kay 104 Jamaica Trelawny Accepted penduliflora 599 MO Kay 174 Jamaica Claredon Accepted penduliflora 599 MO Kay 174 Jamaica Claredon Accepted pllosissima 044* MO Hernandez 291 Colombia Antioquia Accepted poeppigii 266* MO Boza 2139 Peru Loreto Accepted punctata 056* MO Jorgensen 2458 Ecuador Azuay Accepted punctata 057 MO Jorgensen 2457 Ecuador El Oro Accepted punctata 057 MO Weigend 98/184 Peru Piura Accepted quadriflora 369* MO Galiano 6424 Peru Piura Accepted rotundifolia 700* US Stehle 1513 Guadeloupe NA Accepted rotundifolia 700* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127* MO MacDougal 6290 Panama Coclé Accepted saxicola 603* MO MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Barranquitas Accepted sexflora 324* MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 464* MO Krosnick 500 Ecuador Cult. Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted sp. 884* MO Valnezuela 13876 Peru Pasco Accepted sp. 884* MO Valnezuela 13876 Peru Pasco Accepted sp. nov 388* MO Valnezuela 13876 Peru Pasco Accepted sp. nov 388* MO Say 108 Jamaica Trelawny Accepted standleyi 272 MO Brediova 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 MO Davidse | SRR13180697 | - | • | | | - | | • | | Penduliflora 599 MO | SRR13180696 | | - | | | - | | * | | pilosissima 044* MO Hernandez 291 Colombia Antioquia Accepted poeppigii 266* MO Boza 2139 Peru Loreto Accepted punctata 056* MO Jorgensen 2458 Ecuador Azuay Accepted punctata 057 MO Jorgensen 2457 Ecuador El Oro Accepted punctata 192* MO Weigend 98/184 Peru Piura Accepted quadriflora 369* MO Galiano 6424 Peru Cusco Accepted rotundifolia 700* US Stehle 1513 Guadeloupe NA Accepted rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127* MO MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted sp. 884* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 273 MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 | SRR13180695 | Accepted | Trelawny | Jamaica | 104 | Kay | MO | penduliflora 595 | | pilosissima 044* MO Hernandez 291 Colombia Antioquia Accepted poeppigii 266* MO Boza 2139 Peru Loreto Accepted punctata 056* MO Jorgensen 2458 Ecuador Azuay Accepted punctata 057 MO Jorgensen 2457 Ecuador El Oro Accepted punctata 192* MO Weigend 98/184 Peru Piura Accepted quadriflora 369* MO Galiano 6424 Peru Cusco Accepted rotundifolia 700* US Stehle 1513 Guadeloupe NA Accepted rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127* MO MacDougal 6396 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 464* MO Krosnick 500 Ecuador Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted
sp. nov. 270 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 426 MO Davidse 29971 Mexico Chiapas Accepted standleyi 431* MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 | SRR13180694 | Accepted | Claredon | Jamaica | 174 | Kay | MO | penduliflora 599 | | poeppigii 266° MO Boza 2139 Peru Loreto Accepted punctata 056° MO Jorgensen 2458 Ecuador Azuay Accepted punctata 056° MO Jorgensen 2458 Ecuador El Oro Accepted punctata 057 MO Weigend 98/184 Peru Piura Accepted punctata 192° MO Weigend 98/184 Peru Piura Accepted quadriflora 369° MO Galiano 6424 Peru Cusco Accepted rotundifolia 700° US Stehle 1513 Guadeloupe NA Accepted rotundifolia 701° NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127° MO MacDougal 6290 Panama Coclé Accepted saxicola 603° MO MacDougal 6336 Brazil Cult. Accepted sexflora 323° MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444° MO Schwerdtfeger MOID: Ecuador Napo Accepted sp. 884° MO Vanderplank sn Cult. Cult. Accepted sp. 884° MO Vanderplank sn Cult. Cult. Accepted sp. 884° MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 404° MO Ferreyra 7783 Peru San Martin Accepted sp. nov. 404° MO Ferreyra 7783 Peru San Martin Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 273 DUKE MacDougal 85029 Honduras El Paraiso Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 | SRR13180693 | - | | | | • | | ı. | | punctata 056* MO Jorgensen 2458 Ecuador Azuay Accepted punctata 057 MO Jorgensen 2457 Ecuador El Oro Accepted punctata 192* MO Weigend 98/184 Peru Piura Accepted quadriflora 369* MO Galiano 6424 Peru Cusco Accepted rotundifolia 700* US Stehle 1513 Guadeloupe NA Accepted rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127* MO MacDougal 6290 Panama Coclé Accepted saxicola 603* MO MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 404* MO Kay 108 Jamaica Trelawny Accepted sp. nov. 404* MO Kay 108 Jamaica Trelawny Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 273 MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 | SRR13180691 | - | | | | | | • | | punctata 057 MO Jorgensen 2457 Ecuador El Oro Accepted punctata 192* MO Weigend 98/184 Peru Piura Accepted quadriflora 369* MO Galiano 6424 Peru Piura Accepted rotundifolia 700* US Stehle 1513 Guadeloupe NA Accepted rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127* MO MacDougal 6290 Panama Coclé Accepted saxicola 603* MO MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted smilacifolia 464 MO Krosnick 500 Ecuador Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. nov. 404* MO Breedlove 37173 Mexico Chiapas Accepted standleyi 272 MO Renderos 410 El Salvador La Libertad Accepted standleyi 273 MO Renderos 410 El Salvador La Libertad Accepted standleyi 272 MO Povidse 29971 Mexico Chiapas Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 | | - | | | | | | | | punctata 192* MO Weigend 98/184 Peru Piura Accepted quadriflora 369* MO Galiano 6424 Peru Cusco Accepted rotundifolia 700* US Stehle 1513 Guadeloupe NA Accepted rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127* MO MacDougal 6290 Panama Coclé Accepted saxicola 603* MO MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted standleyi 272 MO Renderos 410 ISFO0812 El Salvador Aluachapán Accepted standleyi 273 MO Renderos 410 ISFO0812 El Salvador Aluachapán Accepted standleyi 272 MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 | SRR13180690 | | • | | | | | | | quadriflora 369* MO Galiano 6424 Peru Cusco Accepted rotundifolia 700* US Stehle 1513 Guadeloupe NA Accepted rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127* MO MacDougal 6290 Panama Coclé Accepted saxicola 603* MO MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted sp. 884* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted Standleyi 431* MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 | SRR13180689 | Accepted | | | | - | | | | quadriflora 369* MO Galiano 6424 Peru Cusco Accepted rotundifolia 700* US Stehle 1513 Guadeloupe NA Accepted rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127* MO MacDougal 6290 Panama Coclé Accepted saxicola 603* MO MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted sp. 884* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted Standleyi 431* MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 | SRR13180688 | Accepted | Piura | Peru | 98/184 | Weigend | MO | punctata 192* | | rotundifolia 700* US Stehle 1513 Guadeloupe NA Accepted rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127* MO MacDougal 6290 Panama Coclé Accepted saxicola 603* MO MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted smilacifolia 464 MO Krosnick 500 Ecuador Cult. Accepted sp. 884* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. 612* MO Breedlove 37173 Mexico Chiapas Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador La Libertad Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 | SRR13180687 | - | | | 6424 | | MO | | | rotundifolia 701* NY Stehle 123 Caribbean, Guadeloupe Accepted rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127* MO MacDougal 6290 Panama Coclé Accepted saxicola 603* MO MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted sp. 884* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. 612* MO Breedlove 37173 Mexico Chiapas Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 431* MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 | SRR13180686 | • | | | | | | • | | rotundifolia 908 US Stehle 2585 Caribbean, Guadeloupe Accepted sandrae 127* MO MacDougal 6290 Panama Coclé Accepted saxicola 603* MO
MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted smilacifolia 464 MO Krosnick 500 Ecuador Cult. Cult. Accepted sp. 884* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. 612* MO Breedlove 37173 Mexico Chiapas Accepted standleyi 272 MO Breedlove Standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 29971 Mexico Chiapas Accepted Scepted Scepted Scepted Scepted Scepted Scepted Scepted Scepted Mexico Chiapas Accepted Scepted Scepted Scepted Scepted Scepted Scepted Standleyi 432 MO Davidse Sp. 35029 Honduras El Paraiso Accepted Scepted | | - | | _ | | | | | | sandrae 127* MO MacDougal 6290 Panama Coclé Accepted saxicola 603* MO MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted sexflora 324 MO NO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted sexfloria 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted 2879562 Smilacifolia 464 MO Krosnick 500 Ecuador Cult. Accepted sp. 884* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. 612* MO Kay 108 Jamaica Trelawny Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 35029 Honduras El Paraiso Accepted standleyi 431* MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 | SRR13180685 | - | • | | | | | | | saxicola 603* MO MacDougal 6336 Brazil Cult. Accepted sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted smilacifolia 464 MO Krosnick 500 Ecuador Cult. Accepted sp. 884* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Renderos 410 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 | SRR13180684 | - | • | | | | | | | sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted smilacifolia 464 MO Krosnick 500 Ecuador Cult. Accepted sp. 884* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. 612* MO Kay 108 Jamaica Trelawny Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador La Libertad Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 | SRR13180683 | Accepted | | | 6290 | MacDougal | MO | sandrae 127* | | sexflora 323* MO Hansen 9185 Puerto Rico Patillas Accepted sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted 2879562 Smilacifolia 464 MO Krosnick 500 Ecuador Cult. Accepted sp. 884* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. 612* MO Kay 108 Jamaica Trelawny Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Renderos 410 El Salvador La Libertad Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 | SRR13180682 | Accepted | Cult. | Brazil | 6336 | MacDougal | MO | saxicola 603* | | sexflora 324 MO, NY, US Axelrod 6137 Puerto Rico Barranquitas Accepted smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted 2879562 smilacifolia 464 MO Krosnick 500 Ecuador Cult. Accepted sp. 884* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. nov. 404* MO Kay 108 Jamaica Trelawny Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 | SRR13180680 | - | | | | - | | | | smilacifolia 444* MO Schwerdtfeger MOID: Ecuador Napo Accepted 2879562 smilacifolia 464 MO Krosnick 500 Ecuador Cult. Accepted sp. 884* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. 612* MO Kay 108 Jamaica Trelawny Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 29971 Mexico Chiapas Accepted | SRR13180679 | | | | | | | | | smilacifolia 464 MO Krosnick 500 Ecuador Cult. Accepted sp. 884* MO Vanderplank sn Cult. Cult. Accepted sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. 612* MO Kay 108 Jamaica Trelawny Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 29971 Mexico Chiapas Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted Standleyi 432 | SRR13180678 | | • | | MOID: | | | | | sp. nov. 270 MO Raurau 91 Peru Cusco Accepted sp. nov. 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. 612* MO Kay 108 Jamaica Trelawny Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 35029 Honduras El Paraiso Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted | SRR13180677 | • | | | 500 | | | | | sp. nov 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. 612* MO Kay 108 Jamaica Trelawny Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 35029 Honduras El Paraiso Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted | SRR13180675 | Accepted | Cult. | Cult. | sn | Vanderplank | MO | sp. 884* | | sp. nov 388* MO Valenzuela 13876 Peru Pasco Accepted sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. 612* MO Kay 108 Jamaica Trelawny Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 35029 Honduras El Paraiso Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted | SRR13180674 | Accepted | | | | | | • | | sp. nov. 404* MO Ferreyra 7783 Peru San Martin Accepted sp. 612* MO Kay 108 Jamaica Trelawny Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 35029 Honduras El Paraiso Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted | SRR13180673 | - | | | | | | | | sp. 612* MO Kay 108 Jamaica Trelawny Accepted standleyi 272 MO Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 35029 Honduras El Paraiso Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted | | - | | | | | | | | standleyi 272 MO
Breedlove 37173 Mexico Chiapas Accepted standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 35029 Honduras El Paraiso Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted | SRR13180672 | • | | | | - | | • | | standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 35029 Honduras El Paraiso Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted | SRR13180676 | - | • | | | - | | = | | standleyi 273 DUKE MacDougal 855 Costa Rica San Jose Accepted standleyi 395 MO Castillo ISF00812 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 35029 Honduras El Paraiso Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted | SRR13180671 | Accepted | Chiapas | Mexico | 37173 | Breedlove | MO | standleyi 272 | | standleyi 395 MO Castillo ISF00812 El Salvador Ahuachapán Accepted standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 35029 Honduras El Paraiso Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted | SRR13180669 | - | • | | | | | • | | standleyi 426 MO Renderos 410 El Salvador La Libertad Accepted standleyi 431* MO Davidse 35029 Honduras El Paraiso Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted | | - | | | | | | • | | standleyi 431* MO Davidse 35029 Honduras El Paraiso Accepted standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted | SRR13180668 | • | | | | | | - | | standleyi 432 MO Davidse 29971 Mexico Chiapas Accepted | SRR13180667 | - | | | | | | · · · · · · · · · · · · · · · · · · · | | | SRR13180666 | Accepted | El Paraiso | Honduras | | Davidse | MO | standleyi 431* | | | SRR13180665 | Accepted | Chiapas | Mexico | 29971 | Davidse | MO | standleyi 432 | | and the state of t | SRR13180664 | • | • | | | | | • | | subfertilis 449*; P. MO,DUKE MacDougal 597GR Guatemala Quetzaltenango Accepted | | - | | | | | | = | | subfertilis 449*; P. MO,DUKE MacDougal 597GR Guatemala Quetzaltenango Accepted subfertilis 263 | SRR13180662;
SRR13180663 | Accepted | Querzantenango | Guatelliala | 39/GK | MacDongai | MIO,DUKE | · | #### (continued) | Accession | Institution | Collection | | Country | Locality | Name status | SRA accession | |--------------------------|-------------|----------------------|----------|---------------|----------------------|------------------------------|---------------| | P. talamancensis 412* | MO | Kernan | 120 | Costa Rica | Puntaremas | Accepted | SRR13180661 | | P. tatei 068 | MO | Boza | 2113 | Bolivia | La Paz | Accepted | SRR13180660 | | P. tatei 164* | MO | Fuentes | 8025 | Bolivia | La Paz | Accepted | SRR13180658 | | P. tatei 166* | MO | Delanoy | 398 | Bolivia | La Paz | Accepted | SRR13180657 | | P. telesiphe 173a & b | MO | Grant | 958976 | Ecuador | Zamora- | Accepted | SRR13180656; | | | | | | | Chinchipe | | SRR13180655 | | P. telesiphe 718* | MO | Knapp | 9124 | Ecuador | Zamora-
Chinchipe | Accepted | SRR13180654 | | P. transversalis 491 | MO | Pedersen | 15696 | Brazil | Rio Grande do
Sul | Accepted | SRR13180653 | | P. tribolophylla 708* | NY | Luteyn | 12480 | Colombia | Antioquia | Needs re-
circumscription | SRR13180652 | | P. tribolophylla 709* | NY | Lehmann | BT859 | Colombia | NA | Needs re-
circumscription | SRR13180651 | | P. tribolophylla 866 | TEX | Albert de
Escobar | 1022 | Colombia | Valle del Cauca | Needs re-
circumscription | SRR13180650 | | P. tricuspis 150 | MO | Delanoy | 154 | Bolivia | La Paz | Accepted | SRR13180649 | | P. tricuspis 506 | MO | Boza | 2104 | Bolivia | La Paz | Accepted | SRR13180647 | | P. tricuspis 515 | MO | Zardini | 46427 | Paraguay | Amambay | Accepted | SRR13180646 | | P. tricuspis 516 | MO | Zardini | 46426 | Paraguay | Amambay | Accepted | SRR13180645 | | P. tricuspis 625a* & b | NY | Nee | 37485 | Bolivia | Santa Cruz | Accepted | SRR13180644; | | • | | | | | | • | SRR13180643 | | P. trifasciata 536 | MO | Krosnick | 506 | Cult. | Cult. | Accepted | SRR13180642 | | P. trifasciata 537* | MO | Krosnick | 460 | Cult. | Cult. | Accepted | SRR13180641 | | P. trinervia 078* | MO | Ramos | 3000 | Colombia | Valle del Cauca | Accepted | SRR13180640 | | P. tuberosa 437 | MO | Krosnick | 484 | Cult | Cult. | Accepted | SRR13180639 | | P. tuberosa 445 | MO | Kay | 223 | Cult. | Cult. | Accepted | SRR13180638 | | P. tuberosa 609* | MO | Kay | 223 | Trinidad | Cult. | Accepted | SRR13180635 | | P. tulae 581 | MO | Kay | 225 | Puerto Rico | Maricao | Accepted | SRR13180634 | | P. tulae 583* | MO | Kay | 224 | Puerto Rico | Maricao | Accepted | SRR13180633 | | P. tulae 590 | MO | MacDougal | 6030 | Cult | Cult. | Accepted | SRR13180632 | | P. tulae 614 | MO | Kay | 202 | Puerto Rico | Patillas | Accepted | SRR13180631 | | P. urnifolia 067* | MO | Delanoy | 190 | Bolivia | La Paz | Accepted | SRR13180630 | | P. urnifolia 783 | LPB | Beck | 14905 | Bolivia | La Paz | Accepted | SRR13180628 | | P. urnifolia? 405 | MO | Villarroel | 1494 | Bolivia | Santa Cruz | Accepted | SRR13180629 | | P. vespertilio 128* | MO | Valenzuela | 2488 | Peru | Madre de Dios | Accepted | SRR13180627 | | P. vespertilio 598; P. | MO | MacDougal | 6022 | French Guiana | NA | Accepted | SRR13180624; | | vespertilio 549 | | Ü | | | | • | SRR13180626 | | P. viridescens 039 | MO | Ulloa | 2522 | Ecuador | Azuay | Accepted | SRR13180623 | | P. viridescens 040* | MO | Ulloa | 1887 | Ecuador | Azuay | Accepted | SRR13180622 | | P. viridescens 125 | MO | Schwerdtfeger | 96090602 | Ecuador | Loja | Accepted | SRR13180775 | | P. yucatanensis 478* | MO | Cabrera | 6470 | Mexico | Quintana Roo | Accepted | SRR13180774 | | P. yucatanensis 92 | MO | Aniuk | 36 | Mexico | Quintana Roo | Accepted | SRR13180771 | | P. yucatanensis 591*; P. | MO | MacDougal | 4680 | Mexico | Quintana Roo | Accepted | SRR13180773; | | yucatanensis 722 | | · · | | | | | SRR13180772 | #### Appendix A. Supplementary material Supplementary data to this article can be found online at https://doi.org/10.1016/j.ympev.2021.107260. #### References - Acha, S., MacDougal, J.M. 2021. Taxonomic changes and novelties in Andean Passion flowers (*Passiflora* subgenus *Decaloba*, section *Decaloba*). Manuscript in preparation. Acha, S., 2019. Vines in the Neotropics: Phylogenomics, Biogeography and Systematics in Passion Flowers (*Passiflora* Subgenus *Decaloba* Section *Decaloba*). (Doctoral dissertation, Biology Department, University of Missouri Saint Louis). - Abrahamczyk, S., Souto-Vilarós, D., Renner, S.S., 2014. Escape from extreme specialization: Passionflowers, bats and the sword-billed hummingbird. Proc. R. Soc. B Biol. Sci. 281 (1795), 20140888. https://doi.org/10.1098/rspb.2014.0888. - Aglyamova, G., Matz, M. V., 2014. Protocol for Illumina 2bRAD sample preparation. https://docs.google.com/document/d/1am7L_Pa5JQ4sSx0eT5j4vdNPy5FUA tMZRsJZ0Ar5g9U/edit (accessed 20 April 2020). - Bacon, C.D., Silvestro, D., Jaramillo, C., Smith, B.T., Chakrabarty, P., Antonelli, A., 2015. Correction: Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc. Natl. Acad. Sci. U. S. A. 112, E3153. https://doi.org/ 10.1073/pnas.1509107112. - Baker, P.A., Fritz, S.C., Battisti, D.S., Dick, C.W., Vargas, O.M., Asner, G.P., Martin, R.E., Wheatley, A., Prates, I., 2020. Beyond Refugia: New Insights on Quaternary Climate Variation and the Evolution of Biotic Diversity in Tropical South America 51–70. https://doi.org/10.1007/978-3-030-31167-4_3. - Bell, C.D., Donoghue, M.J., 2005. Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Org. Divers. Evol. 5, 147–159. https://doi.org/10.1016/j.ode.2004.10.014. - Bell, C.D., Kutschker, A., Arroyo, M.T.K., 2012. Phylogeny and diversification of Valerianaceae (Dipsacales) in the southern Andes. Mol. Phylogenet. Evol. 63, 724–737. https://doi.org/10.1016/j.ympev.2012.02.015. - Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A., Drummond, A.J., 2014. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 10, 1–6. https://doi.org/10.1371/ journal.pcbi.1003537. - Boza, E.T.E., Jørgensen, P.M., MacDougal, J.M., 2018. A Taxonomic Revision of Passiflora sect. Xerogona (Passifloraceae) Using Principal Component Analysis. Ann. Missouri Bot. Gard. 103, 258–313. https://doi.org/10.3417/2017055. - Braglia, L., Gavazzi, F., Giovannini, A., Nicoletti, F., De Benedetti, L., Breviario, D., 2014. TBP-assisted species and hybrid identification in the genus *Passiflora*. Mol. Breed. 33, 209–219. https://doi.org/10.1007/s11032-013-9945-6. - Buitrago, A., MacDougal, J., Coca, L., 2018. Passiflora kumandayi (Passifloraceae), a new species from the Colombian Andes in a new section within subgenus Decaloba. Phytotaxa 344, 13–23. https://doi.org/10.11646/phytotaxa.344.1.2. - Burnham, K.P., Anderson, D.R., 2004. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304. https://doi.org/10.1177/ 0049124104268644. - Cai, L., Xi, Z., Lemmon, E.M., Lemmon, A.R., Mast, A., Buddenhagen, C.E., Liu, L., Davis, C.C., 2020. The perfect storm: Gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient angiosperm clade. Malpighiales. bioRxiv. https://doi.org/10.1101/2020.05.26.112318. - Carvalho Francisco, J.N., Lohmann, L.G., 2020. Phylogeny and Biogeography of the Amazonian *Pachyptera* (Bignonieae, Bignoniaceae). Syst. Bot. 45, 361–374. https://doi.org/10.1600/10.1600/036364420X15862837791230. - Chin, S.W., Shaw, J., Haberle, R., Wen, J., Potter, D., 2014.
Diversification of almonds, peaches, plums and cherries Molecular systematics and biogeographic history of *Prunus* (Rosaceae). Mol. Phylogenet. Evol. 76, 34–48. https://doi.org/10.1016/j.vmpev.2014.02.024. - Christenhusz, M.J.M., Byng, J.W., 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217. https://doi.org/10.11646/ phytotaxa.261.3.1. - Cicuzza, D., Krömer, T., Poulsen, A.D., Abrahamczyk, S., Delhotal, T., Piedra, H.M., Kessler, M., 2013. A transcontinental comparison of the diversity and composition of tropical forest understory herb assemblages. Biodivers. Conserv. 22, 755–772. https://doi.org/10.1007/s10531-013-0447-y. - Commission for Environmental Cooperation (CEC), 1997. ECOLOGICAL REGIONS OF NORTH AMERICA: Toward a Common Perspective. Canada. 71p. - Darriba, D., Taboada, G.L., Doallo, R., Posada, D. jModelTest 2: more models, new heuristics and parallel computing, 2012. Nat Methods 9:772. https://doi.org/ 10.1038/nmeth.2109. - Doyle, J., Doyle, J.L., 1987. Genomic plant DNA preparation from fresh tissue–CTAB method. Phytochem. Bull. 19, 11–15. - DRYFLOR, Banda, K., Delgado-Salinas, A., Dexter, K.G., Inares-Palomino, R., Oliveira-Filho, A., Prado, D., Pullan, M., Quintana, C., Riina, R., Rodríguez, M.G., Weintritt, J., Acevedo-Rodríguez, P. Adarve, J., Álvarez, E., Aranguren, A., Arteaga, J.C., Aymard, G., Castaño, A., Ceballos-Mago, N., Cogollo, A., Cuadros, H., Delgado, F., Devia, W., Dueñas, H., Fajardo, L., Fernández, A., Fernández, M.A., Franklin, J., Freid, E.H., Galetti, L.A., Gonto, R., González-M., R., Graveson, R., Helmer, E.H., Idárraga, A., López, R., Marcano-Vega, H., Martínez, O.G., Maturo, H.M., McDonald, M., McLaren, K., Melo, O., Mijares, F., Mogni, V., Molina, D., Moreno, N.P., Nassar, J. M., Neves, D.M., Oakley, L.J., Oatham, M., Olvera-Luna, A.R., Pezzini, F.F., Pennington, R.T., 2016. Plant diversity patterns in neotropical dry forests and their conservation implications. Science. 353, 1383–1388. https://doi.org/10.1126/science.aaf5080. - Dupin, J., Matzke, N.J., Särkinen, T., Knapp, S., Olmstead, R.G., Bohs, L., Smith, S.D., 2017. Bayesian estimation of the global biogeographical history of the Solanaceae. J. Biogeogr. 44, 887–899. https://doi.org/10.1111/jbi.12898. - Eaton, D.A.R., Overcast, I., 2020. Ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594. https://doi.org/10.1093/bioinformatics/ btz966 - Feuillet, C., MacDougal, J.M., 2003. A new infrageneric classification of *Passiflora* L. (Passifloraceae). Passiflora 13, 34–38. - Feuillet, C., MacDougal, J.M., 2007. Passifloraceae Flowering Plants: Eudicots. The Families and Genera of Vascular Plants. Springer, Berlin, Heidelberg, pp. 270–281. - Fischer, R., 2004. Hybrids and Hybridization. In: Ulmer, T., MacDougal, J.M. (Eds.), Passiflora: Passion flowers of the world. Timber Press, pp. 362–376. - Flantua, S., Hooghiemstra, H., Van Boxel, J.H., Cabrera, M., González-Carranza, Z., González-Arango, C., 2014. Connectivity dynamics since the Last Glacial Maximum in the northern Andes: a pollen-driven framework to assess potential migration. In: Paleobotany Biogeogr. a festschrift Alan Graham his 80th year, pp. 98–123. - Flantua, S., Hooghiemstra, H., 2018. Historical connectivity and mountain biodiversity. In: Hoorn, C., Perrigo, A., Antonelli, A. (Eds.) Mountains, Climate and Biodiversity. pp. 171–185. - Frodin, D.G., 2004. History and concepts of big plant genera. Taxon 53, 753–776. https://doi.org/10.2307/4135449. - Gentry, A.H., 1982. Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann. Mo. Bot. Gard. 69, 557–593. https://doi.org/10.2307/ 2399084. - Gentry, A.H., 1988. Changes in Plant Community Diversity and Floristic Composition on Environmental and Geographical Gradients. Ann. Mo. Bot. Gard. 75, 1–34. - Gentry, A.H., 1991. The distribution and evolution of climbing plants. In: Putz , F.E., Mooney H.A. (Eds.) The Biology of Vines. Cambridge University Press, Cambridge. pp. 3–49. - Givnish, T.J., 2010. Ecology of plant speciation. Taxon 59, 1329–1366. https://doi.org/ 10.1002/tax.595003. - Givnish, T.J., Barfuss, M.H.J., van Ee, B., Riina, R., Schulte, K., Horres, R., Gonsiska, P.A., Jabaily, R.S., Crayn, D.M., Smith, J.A.C., Winter, K., Brown, G.K., Evans, T.M., Holst, B.K., Luther, H., Till, W., Zizka, G., Berry, P.E., Sytsma, K.J., 2011. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an eight-locus plastid phylogeny. Am. J. Bot. 98, 872–895. https://doi.org/10.3732/ajb.1000059. - Givnish, T.J., Barfuss, M.H.J., Ee, B.V., Riina, R., Schulte, K., Horres, R., Gonsiska, P.A., Jabaily, R.S., Crayn, D.M., Smith, J.A.C., Winter, K., Brown, G.K., Evans, T.M., Holst, B.K., Luther, H., Till, W., Zizka, G., Berry, P.E., Sytsma, K.J., 2014. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol. Phylogenet. Evol. 71, 55–78. https://doi.org/10.1016/j. ympev.2013.10.010. - Graham, A., 2009. The Andes: A geological overview from a biological perspective. Ann. Missouri Bot. Gard. 96, 371–385. https://doi.org/10.3417/2007146. - Griffith, G.E., Omernik J.M., Azevedo S.H., 1998. Ecological classification of the Western Hemisphere. Unpublished report. U.S. Environmental Protection Agency, Western Ecology Division, Corvallis, 49p. - Gregory-Wodzicki, K.M., 2000. Uplift history of the Central and Northern Andes: A review. Bull. Geol. Soc. Am. 112, 1091–1105. https://doi.org/10.1130/0016-7606 (2000)112<1091:UHOTCA>2.0.CO;2. - van der Hammen, T., Cleef, A.M., 1986. Development of the high Andean Paramo flora and vegetation. In: Vuilleumier, F., Monasterio, M. (Eds.), High altitude tropical biogeography. Oxford University Press, New York, NY, U. S. A, pp. 153–201. - Hazzi, N.A., Moreno, J.S., Ortiz-Movliav, C., Palacio, R.D., 2018. Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proc. Natl. Acad. Sci. U. S. A. 115, 7985–7990. https://doi.org/10.1073/ pnas.1803908115. - Hermsen, E.J., 2021. Review of the fossil record of *Passiflora*, with a description of new seeds from the Pliocene Gray Fossil Site. The University of Chicago, Tennessee, U. S. A., https://doi.org/10.1086/714282 - Hickman, C.S., Lipps, J.H., 1985. Geologic youth of Galápagos Islands confirmed by marine stratigraphy and paleontology. Science 227 (4694), 1578–1580. https://doi. org/10.1126/science.227.4694.1578. - Hooghiemstra, H., Van Der Hammen, T., 2004. Quaternary Ice-Age dynamics in the Colombian Andes: Developing an understanding of our legacy. Philos. Trans. R. Soc. B Biol. Sci. 359, 173–181. https://doi.org/10.1098/rstb.2003.1420. - Hooghiemstra, H., Wijninga, V.M., Cleef, A.M., 2006. The paleobotanical record of Colombia: Implications for biogeography and biodiversity. Ann. Missouri Bot. Gard. 93, 297–324. https://doi.org/10.3417/0026-6493(2006)93[297:TPROCI]2.0.CO;2. - Hughes, C., Eastwood, R., 2006. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. U. S. A. 103, 10334–10339. https://doi.org/10.1073/pnas.0601928103. - Jabaily, R.S., Sytsma, K.J., 2013. Historical biogeography and life-history evolution of Andean *Puya*(Bromeliaceae). Bot. J. Linn. Soc. 171, 201–224. https://doi.org/ 10.1111/j.1095-8339.2012.01307.x. - Jomelli, V., Favier, V., Vuille, M., Braucher, R., Martin, L., Blard, P.H., Colose, C., Brunstein, D., He, F., Khodri, M., Bourlès, D.L., Leanni, L., Rinterknecht, V., Grancher, D., Francou, B., Ceballos, J.L., Fonseca, H., Liu, Z., Otto-Bliesner, B.L., 2014. A major advance of tropical Andean glaciers during the Antarctic cold reversal. Nature 513, 224–228. https://doi.org/10.1038/nature13546. - Kay, E.E., 2003. Floral evolutionary ecology of Passiflora (Passifloraceae); subgenera Murucuia, Pseudomurucuja and Astephia. (Doctoral dissertation, Saint Louis University). - Killip, E.P., 1938. The American species of Passifloraceae. Publ. Field. Mus. Bot. Ser. 19, 1–613. - Krosnick, S.E., Porter-Utley, K.E., Macdougal, J.M., Jørgensen, P.M., McDade, L.A., 2013. New insights into the evolution of *Passiflora* subgenus *Decaloba* (Passifloraceae): Phylogenetic relationships and morphological synapomorphies. Syst. Bot. 38, 692–713. https://doi.org/10.1600/036364413X670359. - Kozak, K. M. (2015). Macroevolution and phylogenomics in the adaptive radiation of Heliconiini butterflies (Doctoral dissertation, University of Cambridge). - Lagomarsino, L.P., Condamine, F.L., Antonelli, A., Mulch, A., Davis, C.C., 2016. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442. https://doi.org/10.1111/nph.13020 - Landis, M.J., Matzke, N.J., Moore, B.R., Huelsenbeck, J.P., 2013. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62, 789–804. https:// doi.org/10.1093/sysbio/syt040. - Lemoine, F., Entfellner, J.B.D., Wilkinson, E., Correia, D., Felipe, M.D., Oliveira, T., Gascuel, O., 2018. Renewing Felsenstein's phylogenetic bootstrap in the era of big data. Nature, 556, 452. https://doi.org/10.1038/s41586-018-0043-0. - Leyden, B.W., 1984. Guatemalan forest synthesis after Pleistocene aridity. Proc. Natl. Acad. Sci. USA 81, 4856–4859. https://doi.org/10.1073/pnas.81.15.4856. - Linares-Palomino, R., Kessler, M., 2009. The role of dispersal ability, climate and spatial separation in shaping biogeographical patterns of phylogenetically distant plant groups in seasonally dry Andean forests of Bolivia. J. Biogeogr. 36, 280–290. https:// doi.org/10.1111/j.1365-2699.2008.02028.x. - Lohmann, L.G., Bell, C.D., Calió, M.F., Winkworth, R.C., 2013. Pattern and timing of biogeographical history in the Neotropical tribe Bignonieae (Bignoniaceae).
Bot. J. Linn. Soc. 171, 154–170. https://doi.org/10.1111/j.1095-8339.2012.01311.x. - MacDougal, J.M., Feuillet, C., 2004. Systematics. In: Ulmer, T., MacDougal, J.M. (Eds.), Passiflora: Passion flowers of the world. Timber Press, pp. 27–31. - [Unpublished data] MacDougal J., Feuillet, C., 2019. Fishbone bare clade *Decaloba*. Manns, U., Wikström, N., Taylor, C.M., Bremer, B., 2012. Historical biogeography of the predominantly neotropical subfamily Cinchonoideae (Rubiaceae): Into or out of America? Int. J. Plant Sci. 173, 261–289. https://doi.org/10.1086/663971. - Massana, K.A., Beaulieu, J.M., Matzke, N.J., O'Meara, B.C., 2015. Non–null effects of the null range in biogeographic models: exploring parameter estimation in the DEC model. bioRxiv, 026914. https://doi.org/10.1101/026914. - Masters, M.T., 1872. Passifloraceae. In: von Martius, C.F.P. (Ed.) Fl. Bras. 13: 529–628. Matzke, N.J., 2013a. BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis in R Scripts. R package, version (2), 1. - Matzke, N.J., 2013b. Probabilistic Historical Biogeography: New Models for Founder-Event Speciation, Imperfect Detection, and Fossils Allow Improved Accuracy and Model-Testing. Front. Biogeogr. 5, 242–248. - Matzke, N.J., 2014. Model selection in historical biogeography reveals that founderevent speciation is a crucial process in island clades. Syst. Biol. 63, 951–970. https:// doi.org/10.1093/sysbio/syu056. - Maunder, M., Abdo, M., Berazain, R., Clubbe, C., Jiménez, F., Leiva, A., Santiago-Valentin, E., Jestrow. B., Francisco-Ortega, J., 2011. The plants of the Caribbean islands: a review of the biogeography, diversity and conservation of a storm-battered biodiversity hotspot. In: Bramwell, D., Caujapé-Castells, J. (Eds.) The Biology of Island Floras. Cambridge University Press, London. pp. 154–178. - Muschner, V.C., Lorenz, A.P., Cervi, A.C., Bonatto, S.L., Souza-Chies, T.T., Salzano, F.M., Freitas, L.B., 2003. A first molecular phylogenetic analysis of *Passiflora* - (Passifloraceae). Am. J. Bot. 90, 1229–1238. https://doi.org/10.3732/ - Muschner, V.C., Zamberlan, P.M., Bonatto, S.L., Freitas, L.B., 2012. Phylogeny, biogeography and divergence times in *Passiflora* (Passifloraceae). Genet. Mol. Biol. 35, 1036–1043. https://doi.org/10.1590/S1415-47572012000600019. - Myers, N., Mittermeler, R.A., Mittermeler, C.G., Da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. https://doi. org/10.1038/35002501. - Nevado, B., Contreras-Ortiz, N., Hughes, C., Filatov, D.A., 2018. Pleistocene glacial cycles drive isolation, gene flow and speciation in the high-elevation Andes. New Phytol. 219, 779–793. https://doi.org/10.1111/nph.15243. - Ocampo Pérez, J., Coppens d'Eeckenbrugge, G., 2017. Morphological characterization in the genus *Passiflora* L.: an approach to understanding its complex variability. Plant Syst. Evol. 303, 531–558. https://doi.org/10.1007/s00606-017-1390-2. - O'Dea, A., Lessios, H.A., Coates, A.G., Eytan, R.I., Restrepo-Moreno, S.A., Cione, A.L., Collins, L.S., De Queiroz, A., Farris, D.W., Norris, R.D., Stallard, R.F., Woodburne, M. O., Aguilera, O., Aubry, M.P., Berggren, W.A., Budd, A.F., Cozzuol, M.A., Coppard, S. E., Duque-Caro, H., Finnegan, S., Gasparini, G.M., Grossman, E.L., Johnson, K.G., Keigwin, L.D., Knowlton, N., Leigh, E.G., Leonard-Pingel, J.S., Marko, P.B., Pyenson, N.D., Rachello-Dolmen, P.G., Soibelzon, E., Soibelzon, L., Todd, J.A., Vermeij, G.J., Jackson, J.B.C., 2016. Formation of the Isthmus of Panama. Sci. Adv. 2, 1–12. https://doi.org/10.1126/sciadv.1600883. - Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D'Amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P., Kassem, K.R., 2001. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933: TFOTWAI2.0.CO:2. - Pérez-Escobar, O.A., Chomicki, G., Condamine, F.L., Karremans, A.P., Bogarín, D., Matzke, N.J., Silvestro, D., Antonelli, A., 2017. Recent origin and rapid speciation of Neotropical orchids in the world's richest plant biodiversity hotspot. New Phytol. 215, 891–905. https://doi.org/10.1111/nph.14629. - Pisias, N.G., Moore Jr, T.C., 1981. The evolution of Pleistocene climate: a time series approach. Earth Planet. Sci. Lett. 52, 450-458. https://doi.org/10.1016/0012-821X (81)90197-7. - QGIS Development Team (2019). QGIS Geographic Information System. Open Source Geospatial Foundation Project. URL http://qgis.osgeo.org". - Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032. - R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. - Ree, R.H., Smith, S.A., 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14. https://doi.org/10.1080/10635150701883881. - Ree, R.H., Hipp, A.L., 2015. In: Appelhans, M.S. (Ed.), Hörandl, E. Next-Generation Sequencing in Plant Systematics Koeltz Scientific Books, United Kingdom, pp. 181–204. - Ricketts, T.H., Dinerstein, E., Olson, D.M., Loucks, C.J., Eichbaum, W., DelaSalla, D., Kavanagh, K., Hedao, P., Hurley, P., Carney, K., Abell, R., Walters, S., 1999. Terrestrial Ecoregions of North America: A Conservation Assessment. Island PressWashington. - Ricklefs, R., Bermingham, E., 2008. The West Indies as a laboratory of biogeography and evolution. Philos. Trans. R. Soc. B Biol. Sci. 363, 2393–2413. https://doi.org/10.1098/rsth.2007.2068 - Ronquist, F., 1997. Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. Syst. Biol. 46, 195–203. https://doi.org/10.1093/sysbio/ 46.1.195 - Roy, T., Chang, T.H., Lan, T., Lindqvist, C., 2013. Phylogeny and biogeography of New World Stachydeae (Lamiaceae) with emphasis on the origin and diversification of Hawaiian and South American taxa. Mol. Phylogenet. Evol. 69, 218–238. https:// doi.org/10.1016/j.ympev.2013.05.023. - Rull, V., 2011. Neotropical biodiversity: Timing and potential drivers. Trends Ecol. Evol. 26, 508–513. https://doi.org/10.1016/j.tree.2011.05.011. - Sader, M.A., Amorim, B.S., Costa, L., Souza, G., Pedrosa-Harand, A., 2019. The role of chromosome changes in the diversification of *Passiflora L.* (Passifloraceae). Syst. Biodivers. 17, 7–21. https://doi.org/10.1080/14772000.2018.1546777. - Santiago-Valentin, E., Olmstead, R.G., 2004. Historical biogeography of Caribbean plants: Introduction to current knowledge and possibilities from a phylogenetic perspective. Taxon 53, 299–319. https://doi.org/10.2307/4135610. - Simon, M.F., Grether, R., De Queiroz, L.P., Skemae, C., Pennington, R.T., Hughes, C.E., 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl. Acad. Sci. U. S. A. 106, 20359–20364. https://doi.org/10.1073/pnas.0903410106. - Simpson, B.B., 1974. Glacial migrations of plants: island biogeographical evidence. Science, 185, 698–700. https://doi.org/10.1126/science.185.4152.698. - Smith, S.A., O'Meara, B.C., 2012. TreePL: Divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690. https://doi.org/ 10.1093/bioinformatics/bts492. - Stamatakis, A., 2014. RAxML version 8: A tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/ 10.1093/bioinformatics/btu033. - Swofford, D.L. 2003. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sunderland: Sinauer Associates. - Takahashi, K., Terai, Y., Nishida, M., Okada, N., 2001. Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in lake Tanganyika as revealed by analysis of the insertion of retroposons. Mol. Biol. Evol. 18, 2057–2066. https://doi.org/10.1093/oxfordjournals.molbev.a003747. - Taylor, K.C., Lamorey, G.W., Doyle, G.A., Alley, R.B., Grootes, P.M., Mayewski, P.A., White, W.C., Barlow, L.K., 1993. The 'flickering switch' of late Pleistocene climate change. Nature 361, 432-436. https://doi.org/10.1038/361432a0. - Tripp, E.A., Tsai, Y.H.E., Zhuang, Y., Dexter, K.G., 2017. RADseq dataset with 90% missing data fully resolves recent radiation of *Petalidium* (Acanthaceae) in the ultra-arid deserts of Namibia. Ecol. Evol. 7, 7920–7936. https://doi.org/10.1002/ecc3.3274. - Turchetto, C., Mäder, G., Cazé, A.L.R., Freitas, L.B., 2018. Genetic variability and population structure of *Passiflora contracta*, a bat-pollinated species from a fragmented rainforest. Bot. J. Linn. Soc. 186, 247–258. https://doi.org/10.1093/ botlinnean/box094. - Ulloa, C.U., Acevedo-rodríguez, P., Beck, S., Belgrano, M.J., Bernal, R., Berry, P.E., Brako, L., Celis, M., Davidse, G., León-yánez, S., Magill, R.E., Neill, D.A., Nee, M., Raven, P.H., Stimmel, H., Strong, M.T., Villaseñor, J.L., Zarucchi, J.L., Zuloaga, F.O., Jørgensen, P.M., 2017. An integrated assessment of the vascular plant species of the Americas. Science 358, 1614–1617. https://doi.org/10.1126/science.aao0398. - Ulmer, T., MacDougal, J.M., 2004. Passiflora: Passion flowers of the world. Timber Press. Upham, N.S., Ojala-Barbour, R., Brito M, J., Velazco, P.M., Patterson, B.D., 2013. Transitions between Andean and Amazonian centers of endemism in the radiation of some arboreal rodents. BMC Evol. Biol. 13. https://doi.org/10.1186/1471-2148-13-191. - Vuilleumier, B.S., 1971. Pleistocene changes in the fauna and flora of South America. Science 173, 771–780. https://doi.org/10.1126/science.173.3999.771. - Wang, S., Meyer, E., Mckay, J.K., Matz, M. V., 2012. 2b-RAD: A simple and flexible
method for genome-wide genotyping. Nat. Methods 9, 808–810. https://doi.org/ 10.1038/nmeth.2023. - Yockteng, R., Nadot, S., 2004. Phylogenetic relationships among Passiflora species based on the glutamine synthetase nuclear gene expressed in chloroplast (ncpGS). Mol. Phylogenet. Evol. 31, 379–396. https://doi.org/10.1016/S1055-7903(03)00277-X. - Yockteng, R., d'Eeckenbrugge, G.C., Souza-Chies, T.T., 2011. Wild Crop Relatives: Genomic and Breeding Resources: Tropical and Subtropical Fruits. Springer, Berlin, Heidelberg, pp. 129–171. https://doi.org/10.1007/978-3-642-20447-0_7. Yu, Y., Harris, A.J., Blair, C., He, X., 2015. RASP (Reconstruct Ancestral State in - Yu, Y., Harris, A.J., Biair, C., He, X., 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49. https://doi.org/10.1016/j.ympev.2015.03.008. - Yu, G., Smith, D.K., Zhu, H., Guan, Y., Lam, T.T.Y., 2017. ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36. https://doi.org/10.1111/2041-210X.12628. - Yu, G., Lam, T.T.Y., Zhu, H., Guan, Y., 2018. Two methods for mapping and visualizing associated data on phylogeny using GGTree. Mol. Biol. Evol. 35, 3041–3043. https:// doi.org/10.1093/molbev/msy194. - Yu, G., 2020. Using ggtree to Visualize Data on Tree-Like Structures. Curr. Protoc. Bioinforma. 69, 1–18. https://doi.org/10.1002/cpbi.96. - Zuloaga, F.O., Morrone, O., Belgrano, M.J., 2008. Catálogo de las plantas vasculares del Cono Sur. Monographs in Systematic Botany from the Missouri Botanical Garden, 107(1-3): i-xcvi, 1-3348.